Tính các tỉ số lượng giác của góc nhọn A trong mỗi tam giác vuông ABC có B = 90 độ ở Hình 5 (kết quả

0.9 K

Với giải Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Tỉ số lượng giác của góc nhọn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Tỉ số lượng giác của góc nhọn

Thực hành 1 trang 61 Toán 9 Tập 1: Tính các tỉ số lượng giác của góc nhọn A trong mỗi tam giác vuông ABC có B^=90° ở Hình 5 (kết quả làm tròn đến hàng phần trăm).

Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Lời giải:

• Hình 5a:

Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét ∆ABC có  B^=90°,  A^=α.

Ta có:

sinα=BCAC=45=0,8;

cosα=ABAC=35=0,6;

tanα=BCAB=431,33;

cotα=ABBC=34=0,75.

• Hình 5b:

Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Xét ∆ABC có B^=90°,  A^=α.

Ta có:

sinα=BCAC=1170,24;

cosα=ABAC=4170,97;

tanα=BCAB=14=0,25;

cotα=ABBC=41=4.

• Hình 5c:

Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Áp dụng định lí Pythagore vào ∆ABC vuông tại B, ta có:

AC2 = AB2 + BC2 nên BC2 = AC2 − AB2 = 32 − 22 = 5.

Suy ra BC=5.

Xét ∆ABC có B^=90°,  A^=α.

Ta có:

sinα=BCAC=530,75;

cosα=ABAC=230,67;

tanα=BCAB=521,12;

cotα=ABBC=250,89.

• Hình 5d:

Thực hành 1 trang 61 Toán 9 Tập 1 Chân trời sáng tạo | Giải Toán 9

Áp dụng định lí Pythagore vào ∆ABC vuông tại B, ta có:

AC2=AB2+BC2=102+62=10+6=16.

Suy ra AC=16=4.

Xét ∆ABC có B^=90°,  A^=α.

Ta có:

sinα=BCAC=640,61;

cosα=ABAC=1040,79;

tanα=BCAB=6100,77;

cotα=ABBC=1061,29.       

Lý Thuyết Định nghĩa tỉ số lượng giác của một góc nhọn

Lý thuyết Tỉ số lượng giác của góc nhọn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 1)

sinα=cnhđicnhhuyn;cosα=cnhkcnhhuyn;

tanα=cnhđicnhk;cotα=cnhkcnhđi.

cotα=1tanα.

  • sinα,cosα,tanα,cotα gọi là các tỉ số lượng giác của góc nhọn α.

Tip học thuộc nhanh:

Sin đi học

Cos không hư

Tan đoàn kết

Cotan kết đoàn

Chú ý: Với góc nhọn α, ta có:

0<sinα<10<cosα<1.

cotα=1tanα.

Ví dụ:

Lý thuyết Tỉ số lượng giác của góc nhọn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 2)

Theo định nghĩa của tỉ số lượng giác, ta có:

sinα=ACBC=45cosα=ABBC=35tanα=ACAB=43cotα=ABAC=34

Bảng giá trị lượng giác của các góc nhọn đặc biệt

Lý thuyết Tỉ số lượng giác của góc nhọn (Chân trời sáng tạo 2024) | Lý thuyết Toán 9 (ảnh 3)

Ví dụ: P=sin300.cos600tan450=12.121=14.

Đánh giá

0

0 đánh giá