Hoạt động 14 trang 30 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

222

Với giải Hoạt động 14 trang 30 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị

Hoạt động 14 trang 30 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cotx ở Hình 31.

Hoạt động 14 trang 30 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu tập giá trị của hàm số y = cotx.

b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.

c) Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π) hay không? Hàm số y = cotx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.

Lời giải:

a) Tập giá trị của hàm số y = cotx là ℝ.

b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = cotx.

Do đó hàm số y = cotx là hàm số lẻ.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π).

Làm tương tự như trên ta sẽ được đồ thị hàm số y = cotx trên ℝ \ {kπ | k  ℤ}.

‒ Xét hàm số f(x) = y = cotx trên D = ℝ \ {kπ | k  ℤ}, với T = π và x  D ta có:

• x + π  D và x – π  D;

• f(x + π) = f(x)

Do đó hàm số y = cotx là hàm số tuần hoàn với chu kì T = π.

d) Quan sát đồ thị hàm số y = cotx ở Hình 31, ta thấy: đồ thị hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (‒π; 0); (0; π); (π; 2π); …

Ta có: (‒2π; ‒π) = (0 ‒ 2π; π – 2π);

(‒π; 0) = (0 – π; π ‒ π);

(π; 2π) = (0 + π; π + π);

Do đó ta có thể viết đồ thị hàm số y = cotx nghịch biến trên mỗi khoảng (kπ; π + kπ) với k  ℤ.

Lý thuyết Hàm số y = cotx

5.1. Định nghĩa

Quy tắc đặt tương ứng mỗi số thực x ∈ E với một số thực cotx được gọi là hàm số y = cotx. Tập xác định của hàm số y = cotx là E = ℝ \ {kπ | k ∈ ℤ}.

5.2. Đồ thị của hàm số y = cotx

Ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 4.

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều

5.3. Tính chất của hàm số y = cotx

Hàm số y = cotx có tập giá trị là ℝ và có những tính chất sau:

⦁ Là hàm số lẻ, có đồ thị đối xứng qua gốc tọa độ O;

⦁ Là hàm số tuần hoàn chu kì π;

⦁ Là hàm số nghịch biến trên mỗi khoảng (kπ; π + kπ) với k ∈ ℤ.

Ví dụ 6. Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m + 1 và đồ thị hàm số y = cotx trên khoảng (0; 2π).

Hướng dẫn giải

Đồ thị hàm số y = cotx và đường thẳng y = m + 1 trên khoảng (0; 2π) được vẽ như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều

Quan sát hình vẽ, ta thấy trên khoảng (0; 2π), đồ thị hàm số y = cotx (đường màu đỏ) cắt đường thẳng y = m + 1 (đường màu xanh lá) tại hai điểm A, B phân biệt.

Vậy số giao điểm của đường thẳng y = m + 1 và đồ thị hàm số y = cotx trên khoảng (0; 2π) là 2.

Đánh giá

0

0 đánh giá