Với giải Hoạt động 11 trang 28 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị
Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29.
a) Nêu tập giá trị của hàm số y = tanx.
b) Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.
c) Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng hay không? Hàm số y = tanx có tuần hoàn hay không?
d) Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.
Lời giải:
a) Tập giá trị của hàm số y = tanx là ℝ.
b) Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = tanx.
Do đó hàm số y = tanx là hàm số lẻ.
c)
‒ Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = tanx trên khoảng .
Làm tương tự như trên ta sẽ được đồ thị hàm số y = tanx trên R\.
‒ Xét hàm số f(x) = y = tanx trên D = R\, với T = π và x ∈ D ta có:
• x + π ∈ D và x – π ∈ D;
• f(x + π) = f(x)
Do đó hàm số y = tanx là hàm số tuần hoàn với chu kì T = π.
d) Quan sát đồ thị hàm số y = tanx ở Hình 29, ta thấy: đồ thị hàm số đồng biến trên mỗi khoảng ;...
Ta có: ;
;
…
Do đó ta có thể viết đồ thị hàm số y = tanx đồng biến trên mỗi khoảng với k ∈ ℤ.
Lý thuyết Hàm số y = tanx
4.1. Định nghĩa
Quy tắc đặt tương ứng mỗi số thực x ∈ D với một số thực tanx được gọi là hàm số y = tanx. Tập xác định của hàm số y = tanx là .
4.2. Đồ thị của hàm số y = tanx
Ta có đồ thị hàm số y = tanx trên D được biểu diễn ở Hình 3.
4.3. Tính chất của hàm số y = tanx
Hàm số y = tanx có tập giá trị là ℝ và có những tính chất sau:
⦁ Là hàm số lẻ, có đồ thị đối xứng qua gốc tọa độ O;
⦁ Là hàm số tuần hoàn chu kì π;
⦁ Là hàm số đồng biến trên mỗi khoảng với k ∈ ℤ.
Ví dụ 5. Xét tính chẵn, lẻ của hàm số f(x) = sin2x.tanx.
Tập xác định của hàm số f(x) là .
⦁ Với mọi x ∈ D, ta có –x ∈ D;
⦁ f(–x) = sin(–2x).tan(–x) = –sin2x.(–tanx) = sin2x.tanx = f(x).
Vậy hàm số f(x) = sin2x.tanx là hàm số chẵn.
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 22 Toán 11 Tập 1: a) Cho hàm số f(x) = x2...
Luyện tập 1 trang 23 Toán 11 Tập 1: a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ...
Hoạt động 2 trang 23 Toán 11 Tập 1: Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21...
Luyện tập 2 trang 23 Toán 11 Tập 1: Cho ví dụ về hàm số tuần hoàn...
Hoạt động 4 trang 24 Toán 11 Tập 1: Cho hàm số y = sinx...
Hoạt động 5 trang 25 Toán 11 Tập 1: Quan sát đồ thị hàm số y = sinx ở Hình 24...
Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng ?...
Hoạt động 7 trang 26 Toán 11 Tập 1: Cho hàm số y = cosx...
Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27...
Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx...
Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29...
Hoạt động 13 trang 29 Toán 11 Tập 1: Cho hàm số y = cotx....
Hoạt động 14 trang 30 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cotx ở Hình 31...
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:...
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng để:...
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:...
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:...
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:...
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Các phép biến đổi lượng giác
Bài 3: Hàm số lượng giác và đồ thị