Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 4: Phương trình lượng giác cơ bản chi tiết sách Toán 11 Tập 1 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài 4: Phương trình lượng giác cơ bản
Trên thực tế, có nhiều bài toán dẫn đến việc giải một trong các phương trình có dạng: sinx = m, cosx = m, tanx = m, cotx = m, trong đó x là ẩn số, m là số thực cho trước. Các phương trình đó là các phương trình lượng giác cơ bản.
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
• Để vệ tinh cách mặt đất 1 000 km thì 550 + 450cost = 1 000
450cost=450
cost = 1
t = k2 (k, t0)
t = k2. = 100k (k{0; 1; 2; 3;...}
Vậy tại các thời điểm t = 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 1 000 km.
• Để vệ tinh cách mặt đất 250 km thì 550 + 450cost = 250
450cost = -300
cost = -
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 2,3)
Vậy tại các thời điểm t +100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 250 km.
• Để vệ tinh cách mặt đất 100 km thì 550 + 450cost = 100
450cost = -450
cost = -1
t = +k2 (kZ, t0).
t = 50+100k (k{0;1;2;3;...}
Vậy tại các thời điểm t = 50 + 100k (với k ∈ ℤ, t ≥ 0) (phút) kể từ lúc vệ tinh bay vào quỹ đạo thì vệ tinh cách mặt đất 100 km.
I. Phương trình tương đương
Hoạt động 1 trang 32 Toán 11 Tập 1: Cho hai phương trình (với cùng ẩn x):
x2 ‒ 3x + 2 = 0 (1)
(x – 1)(x – 2) = 0 (2)
a) Tìm tập nghiệm S1 của phương trình (1) và tập nghiệm S2 của phương trình (2).
b) Hai tập S1, S2 có bằng nhau hay không?
Lời giải:
a) Ta có:
x2 ‒ 3x + 2 = 0 (1)
Suy ra x = 1 hoặc x = 2.
Vậy phương trình (1) có tập nghiệm S1 = {1; 2}.
(x – 1)(x – 2) = 0 (2)
Suy ra x = 1 hoặc x = 2.
Vậy phương trình (2) có tập nghiệm S2 = {1; 2}.
b) Hai tập S1, S2 bằng nhau vì cùng là tập {1; 2}.
Luyện tập 1 trang 32 Toán 11 Tập 1: Hai phương trình x – 1 = 0 và =0 có tương đương không? Vì sao?
Lời giải:
Tập nghiệm của phương trình x – 1 = 0 là S1 = {1}.
Tập nghiệm của phương trình là S2 = {1}.
Vì S1 = S2 nên hai phương trình x – 1 = 0 và =0 tương đương.
Hoạt động 2 trang 33 Toán 11 Tập 1: Khẳng định 3x ‒ 6 = 0 3x = 6 đúng hay sai?
Lời giải:
Phương trình 3x ‒ 6 = 0 có tập nghiệm S1 = {2}.
Phương trình 3x = 6 có tập nghiệm S2 = {2}.
Vì S1 = S2 nên hai phương trình 3x ‒ 6 = 0 và 3x = 6 tương đương
Khi đó ta viết 3x ‒ 6 = 0 3x = 6.
Vậy khẳng định 3x ‒ 6 = 0 3x = 6 là khẳng định đúng.
Luyện tập 2 trang 33 Toán 11 Tập 1: Giải phương trình: (x – 1)2 = 5x – 11.
Lời giải:
Ta có: (x – 1)2 = 5x – 11.
x2 – 2x + 1 – (5x – 11) = 0
x2 – 2x + 1 – 5x + 11 = 0
x2 – 7x + 12 = 0
x = 3 hoặc x = 4.
Vậy tập nghiệm của phương trình đã cho là S = {3; 4}.
II. Phương trình sinx = m
b) Đường thẳng d: y = cắt đồ thị hàm số y = sinx, x ∈ [π; 3π] tại hai giao điểm A1, B1 (Hình 33). Tìm hoành độ của hai giao điểm A1, B1.
Lời giải:
a) Với x ∈ [‒π; π] ta thấy sin x = tại x = và x = .
Do đó đường thẳng d: y = cắt đồ thị hàm số y = sinx, x ∈ [‒π; π] tại hai giao điểm A0, B0 có hoành độ lần lượt là và .
b) Với x ∈ [π; 3π] ta thấy sin x = tại x = và x = .
Do đó đường thẳng d: y = cắt đồ thị hàm số y = sinx, x ∈ [π; 3π] tại hai giao điểm A1, B1 có hoành độ lần lượt là và .
Luyện tập 3 trang 34 Toán 11 Tập 1: a) Giải phương trình: sin x = ;
b) Tìm góc lượng giác x sao cho sinx = sin55°.
Lời giải:
a) Do sin x = nên sin x = sin
Vậy phương trình sin x = có các nghiệm là x = +k2 và x = +k2 với k ∈ ℤ.
b) sinx = sin55°
Vậy các góc lượng giác thỏa mãn sinx = sin55° là x = 55° + k360° và x = 125° + k360° với k ∈ ℤ.
Luyện tập 4 trang 35 Toán 11 Tập 1: Giải phương trình sin2x = sin.
Lời giải:
Ta có:
sin2x = sin
Vậy phương trình đã cho có các nghiệm là x = +k2 và x = +k với k ∈ ℤ.
III. Phương trình cosx = m
b) Đường thẳng d: y = cắt đồ thị hàm số y = cosx, x ∈ [π; 3π] tại hai giao điểm C1, D1 (Hình 34). Tìm hoành độ của hai giao điểm C1, D1.
Lời giải:
a) Với x ∈ [‒π; π] ta thấy cosx = tại x = - và x = .
Do đó đường thẳng d: y = cắt đồ thị hàm số y = cosx, x ∈ [‒π; π] tại hai giao điểm C0, D0 có hoành độ lần lượt là và .
b) Với x ∈ [π; 3π] ta thấy cosx = tại x = và x = .
Do đó đường thẳng d: y = cắt đồ thị hàm số y = cosx, x ∈ [π; 3π] tại hai giao điểm C1, D1 có hoành độ lần lượt là và .
Luyện tập 5 trang 36 Toán 11 Tập 1: a) Giải phương trình: cosx = -.
b) Tìm góc lượng giác x sao cho cosx = cos(‒87°).
Lời giải:
a) Do cosx = - nên cosx = cos
Vậy phương trình đã cho có các nghiệm là x = +k2 và x = -+k2 với k ∈ ℤ.
b) cosx = cos(‒87°)
cosx = cos87°
Vậy các góc lượng giác x cần tìm là x = 87° + k360° và x = ‒87° + k360° với k ∈ ℤ.
Luyện tập 6 trang 37 Toán 11 Tập 1: Giải phương trình được nêu trong bài toán mở đầu.
Lời giải:
• Ta có:
550 + 450cost = 1 000
450cost = 450
cost = 1
t = k2 (kZ, t0)
t = k2. = 100k (kZ, t0).
Vậy phương trình này có các nghiệm là t = 100k với k ∈ ℤ, t ≥ 0.
• Ta có:
550 + 450cost = 250
450cost = -300
cost = -
(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 2,3)
Vậy phương trình có các nghiệm là t+100k và t+100k với k ∈ ℤ, t ≥ 0.
• Ta có:
550 + 450cost = 100
450cost = -450
cost = -1
t = + k2 (kZ, t0)
t = 50 + 100k (kZ, t0).
Vậy phương trình có các nghiệm là t = 50 + 100k với k ∈ ℤ, t ≥ 0.
IV. Phương trình tanx = m
a) Từ hoành độ giao điểm của đồ thị hàm số y = tanx và đường thẳng y = 1 trên khoảng , hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.
b) Có nhận xét gì về nghiệm của phương trình tanx = 1?
Lời giải:
a) Với x ta thấy tanx = 1 tại x=.
Do đó đường thẳng y = 1 cắt đồ thị hàm số y = tanx trên khoảng tại điểm có hoành độ là .
Do hàm số y = tanx tuần hoàn với chu kì là π nên đường thẳng y = 1 cắt đồ thị hàm số y = tanx tại các điểm có hoành độ là x = +k (kZ).
b) Phương trình tanx = 1 có các nghiệm là x = +k (kZ).
Luyện tập 7 trang 37 Toán 11 Tập 1: a) Giải phương trình: tanx = 1.
b) Tìm góc lượng giác x sao cho tanx = tan67°.
Lời giải:
a) Do tanx = 1 nên tanx = tan x = (kZ).
Vậy phương trình tanx = 1 có các nghiệm là x= với k ∈ ℤ.
b) tanx = tan67° x = 67° + k180° (k ∈ ℤ).
Vậy các góc lượng giác x cần tìm là x = 67° + k180° với k ∈ ℤ.
V. Phương trình cotx = m
a) Từ hoành độ giao điểm của đồ thị hàm số y = cotx và đường thẳng y = ‒1 trên khoảng (0; π), hãy xác định tất cả các hoành độ giao điểm của hai đồ thị đó.
b) Có nhận xét gì về nghiệm của phương trình cotx = ‒1?
Lời giải:
a) Với x ∈ (0; π), ta thấy cotx = ‒1 tại x=.
Do đó đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx trên khoảng (0; π) tại điểm có hoành độ là .
Do hàm số y = cotx tuần hoàn với chu kì là π nên đường thẳng y = ‒1 cắt đồ thị hàm số y = cotx tại các điểm có hoành độ là x=+k (kZ).
b) Phương trình cotx = ‒1 có các nghiệm là x=-+k.
Luyện tập 8 trang 39 Toán 11 Tập 1: a) Giải phương trình: cotx = 1.
b) Tìm góc lượng giác x sao cho cotx = cot(‒83°).
Lời giải:
a) Do cotx = 1 nên cotx = cot x=+k (kZ).
Vậy phương trình cotx = 1 có các nghiệm là x=+k với k ∈ ℤ.
b) cotx = cot(‒83°)
x = ‒83° + k180° (k ∈ ℤ).
Vậy các góc lượng giác x cần tìm là x = ‒83° + k180° với k ∈ ℤ.
VI. Giải phương trình lượng giác cơ bản bằng máy tính cầm tay
a) sinx = 0,2;
b) cosx = -;
c) tanx = .
Lời giải:
Sau khi chuyển máy tính sang chế độ “radian”.
a) Bấm liên tiếp
Ta được kết quả gần đúng là 0,201.
Vậy phương trình sinx = 0,2 có các nghiệm là:
x ≈ 0,201 + k2π, k ∈ ℤ
và x ≈ π – 0,201 + k2π, k ∈ ℤ.
b) Bấm liên tiếp
Ta được kết quả gần đúng là 1,772.
Vậy phương trình cosx = - có các nghiệm là: x ≈ ± 1,772 + k2π, k ∈ ℤ.
c) Bấm liên tiếp
Ta được kết quả gần đúng là 0,955.
Vậy phương trình tanx = có các nghiệm là: x ≈ 0,955 + kπ, k ∈ ℤ.
Bài tập
Bài 1 trang 40 Toán 11 Tập 1: Giải phương trình:
a) sin;
b) sin;
c) cos;
d) 2cos3x + 5 = 3;
e) 3tanx = -;
g) cotx - 3 = (1-cotx).
Lời giải:
a) sin
sin = sin
Vậy phương trình đã cho có các nghiệm là x=k và x=+k với k ∈ ℤ.
b) sin
sin = sin
Vậy phương trình đã cho có các nghiệm là x = và x = với k ∈ ℤ.
c) cos
cos = cos
Vậy phương trình đã cho có các nghiệm là x = +k4 và x= với k ∈ ℤ.
d) 2cos3x + 5 = 3
cos3x = ‒1
3x = π + k2π (k ∈ ℤ)
x = +k(k ∈ ℤ).
Vậy phương trình đã cho có các nghiệm là x = +k với k ∈ ℤ.
e) 3tanx = -
tanx =
tanx = tan
x = + k (k ∈ ℤ).
Vậy phương trình đã cho có các nghiệm là x = + k với k ∈ ℤ.
g) cotx - 3 = (1-cotx)
cotx - 3 = -cotx
(1+)cotx = +3
cotx =
cotx =
cotx = cot
x = +k (k ∈ ℤ).
Vậy phương trình đã cho có các nghiệm là x = +k với k ∈ ℤ.
Bài 2 trang 40 Toán 11 Tập 1: Giải phương trình:
a) sin = sinx;
b) sin2x = cos3x;
c) .
Lời giải:
a) sin = sinx
Vậy phương trình đã cho có các nghiệm là x = +k2 và x=+k với k ∈ ℤ.
b) sin2x = cos3x
cos = cos3x
cos3x = cos
Vậy phương trình đã cho có các nghiệm là và với k ∈ ℤ.
c)
Vậy phương trình đã cho có các nghiệm là x = +k và x = -+k với k ∈ ℤ.
a) 3sinx + 2 = 0 trên khoảng ;
b) cosx = 0 trên đoạn .
Lời giải:
a) Ta có: 3sinx + 2 = 0
sinx = -.
Đường thẳng y = - và đồ thị hàm số y = sinx trên khoảng được vẽ như sau:
Từ đồ thị, ta thấy đường thẳng y = - cắt đồ thị hàm số y = sinx trên khoảng tại 5 điểm A, B, C, D, E.
Vậy phương trình 3sinx + 2 = 0 có 5 nghiệm trên khoảng .
b) Đường thẳng y = 0 (trục Ox) và đồ thị hàm số y = cosx trên đoạn được vẽ như sau:
Từ đồ thị, ta thấy đường thẳng y = 0 cắt đồ thị hàm số y = cosx trên đoạn tại 6 điểm M, N, P, Q, I, K.
Vậy phương trình cosx = 0 có 6 nghiệm trên đoạn .
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020)
a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?
b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ánh sáng mặt trời?
c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?
Lời giải:
a) Để thành phố A có đúng 12 giờ có ánh sáng mặt trời thì:
3sin+12 = 12
sin = 0
(t-80) = k (kZ)
t - 80 = 182k (kZ)
t = 80+182k (kZ).
Do t ∈ ℤ và 0 < t ≤ 365 nên ta có:
Với k = 0 thì t = 80 + 182.0 = 80;
Với k = 1 thì t = 80 + 182.1 = 262.
Vậy thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và ngày thứ 262 trong năm.
b) Để thành phố A có đúng 9 giờ có ánh sáng mặt trời thì:
3sin+12 = 9
sin = -1
(t-80) = - + k2 (kZ)
t - 80 = -91+364k (kZ)
t = -11+364k (kZ)
Do t ∈ ℤ và 0 < t ≤ 365 nên ta có:
Với k = 1 thì t = ‒11 + 364.1 = 353.
Vậy thành phố A có đúng 9 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.
c) Để thành phố A có đúng 15 giờ có ánh sáng mặt trời thì:
3sin+12 = 15
sin = 1
(t-80) = + k2 (kZ)
t - 80 = 91+364k (kZ)
t = 171+364k (kZ)
Do t ∈ ℤ và 0 < t ≤ 365 nên ta có:
Với k = 0 thì t = 171 + 364.0 = 171.
Vậy thành phố A có đúng 15 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.
Lời giải:
• Để khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng là 3 m thì:
Do t ≥ 0, k ∈ ℤ nên k ∈ {0; 1; 2; …}
Khi đó
Vậy (giây) thì khoảng cách h là 3 m.
• Để khoảng cách h(m) từ vị trí người chơi đu đến vị trí cân bằng là 0 m thì:
Do t ≥ 0, k ∈ ℤ nên k ∈ {0; 1; 2; …}, khi đó {}.
Vậy {} (giây) thì khoảng cách h là 0 m.
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 3: Hàm số lượng giác và đồ thị
Bài 4: Phương trình lượng giác cơ bản
Lý thuyết Phương trình lượng giác cơ bản
1. Khái niệm phương trình tương đương
- Hai phương trình (cùng ẩn) được gọi là tương đương khi chúng có cùng tập nghiệm.
- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết
*Chú ý: Hai phương trình vô nghiệm là hai phương trình tương đương.
- Các phép biến đổi tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
2. Phương trình
Phương trình sinx=m có nghiệm khi và chỉ khi .
Khi sẽ tồn tại duy nhất thoả mãn . Khi đó:
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
3. Phương trình
Phương trình có nghiệm khi và chỉ khi .
Khi sẽ tồn tại duy nhất thoả mãn . Khi đó:
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
4. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
5. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
6. Sử dụng máy tính cầm tay tìm góc khi biết giá trị lượng giác của nó
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).
Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc