Luyện tập 4 trang 27 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

233

Với giải Luyện tập 4 trang 27 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị

Luyện tập 4 trang 27 Toán 11 Tập 1: Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?

Lời giải:

Do (‒2π; ‒π) = (0 – 2π; π – 2π) nên hàm số nghịch biến trên khoảng (‒2π; ‒π).

Lý thuyết Hàm số y = cosx

3.1. Định nghĩa

Quy tắc đặt tương ứng mỗi số thực x với một số thực cosx được gọi là hàm số y = cosx.

Tập xác định của hàm số y = cosx là ℝ.

3.2. Đồ thị của hàm số y = cosx

Ta có đồ thị của hàm số y = cosx trên ℝ được biểu diễn ở Hình 2.

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều

3.3. Tính chất của hàm số y = cosx

Hàm số y = cosx có tập giá trị là [–1; 1] và có những tính chất sau:

⦁ Là hàm số chẵn, có đồ thị đối xứng qua trục tung;

⦁ Là hàm số tuần hoàn chu kì 2π;

⦁ Là hàm số đồng biến trên mỗi khoảng (–π + k2π; k2π), nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ ℤ.

Ví dụ 4.

+ Hàm số y = cosx đồng biến trên khoảng (5π; 6π) vì (5π; 6π) = (–π + 3.2π; 3.2π);

+ Hàm số y = cosx nghịch biến trên khoảng (–8π; –7π) vì (–8π; –7π) = (–4.2π; π + (–4).2π).

Nhận xét: Dựa vào đồ thị của hàm số y = cosx (Hình 2), ta thấy cosx = 0 tại những giá trị Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều. Vì vậy, tập hợp các số thực x sao cho cosx ≠ 0 là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều.

Đánh giá

0

0 đánh giá