Hoạt động 8 trang 27 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

267

Với giải Hoạt động 8 trang 27 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 3: Hàm số lượng giác và đồ thị giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị

Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27.

Hoạt động 8 trang 27 Toán 11 Tập 1 | Cánh diều Giải Toán 11

a) Nêu tập giá trị của hàm số y = cosx.

b) Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cosx.

c) Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π] hay không? Hàm số y = cosx có tuần hoàn hay không?

d) Tìm khoảng đồng biến, nghịch biến của hàm số y = cosx.

Lời giải:

a) Tập giá trị của hàm số y = cosx là [‒1; 1].

b) Trục tung là trục đối xứng của đồ thị hàm số.

Do đó hàm số y = cosx là hàm số chẵn.

c)

‒ Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π].

Làm tương tự như trên ta sẽ được đồ thị hàm số y = cosx trên ℝ.

‒ Xét hàm số f(x) = y = cosx trên ℝ, với T = 2π và x  ℝ ta có:

• x + 2π  ℝ và x – 2π  ℝ;

• f(x + 2π) = f(x)

Do đó hàm số y = cosx là hàm số tuần hoàn với chu kì T = 2π.

d) Quan sát đồ thị hàm số y = cosx ta thấy:

• Hàm số đồng biến trên mỗi khoảng (‒3π; ‒2π); (‒π; 0); (π; 2π); …

Ta có: (‒3π; ‒2π) = (‒π ‒ 2π; 0 ‒ 2π);

(π; 2π) = (‒π + 2π; 0 + 2π);

Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng (‒π + k2π; k2π) với k  ℤ.

• Hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (0; π); (2π; 3π); …

Ta có: (‒2π; ‒π) = (0 ‒ 2π; π ‒ 2π);

(2π; 3π) = (0 + 2π; π + 2π);

Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng (k2π; π + k2π) với k  ℤ.

Lý thuyết Hàm số y = cosx

3.1. Định nghĩa

Quy tắc đặt tương ứng mỗi số thực x với một số thực cosx được gọi là hàm số y = cosx.

Tập xác định của hàm số y = cosx là ℝ.

3.2. Đồ thị của hàm số y = cosx

Ta có đồ thị của hàm số y = cosx trên ℝ được biểu diễn ở Hình 2.

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều

3.3. Tính chất của hàm số y = cosx

Hàm số y = cosx có tập giá trị là [–1; 1] và có những tính chất sau:

⦁ Là hàm số chẵn, có đồ thị đối xứng qua trục tung;

⦁ Là hàm số tuần hoàn chu kì 2π;

⦁ Là hàm số đồng biến trên mỗi khoảng (–π + k2π; k2π), nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ ℤ.

Ví dụ 4.

+ Hàm số y = cosx đồng biến trên khoảng (5π; 6π) vì (5π; 6π) = (–π + 3.2π; 3.2π);

+ Hàm số y = cosx nghịch biến trên khoảng (–8π; –7π) vì (–8π; –7π) = (–4.2π; π + (–4).2π).

Nhận xét: Dựa vào đồ thị của hàm số y = cosx (Hình 2), ta thấy cosx = 0 tại những giá trị Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều. Vì vậy, tập hợp các số thực x sao cho cosx ≠ 0 là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Cánh diều.

Đánh giá

0

0 đánh giá