Luyện tập 4 trang 35 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

434

Với giải Luyện tập 4 trang 35 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 4: Phương trình lượng giác cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 4: Phương trình lượng giác cơ bản

Luyện tập 4 trang 35 Toán 11 Tập 1: Giải phương trình sin2x = sinx+π4.

Lời giải:

Ta có:

sin2x = sinx+π4

Luyện tập 4 trang 35 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Vậy phương trình đã cho có các nghiệm là x = π4+k2π và x = π4+k2π3 với k  ℤ.

Lý thuyết Phương trình sinx=m

Phương trình sinx=m có nghiệm khi và chỉ khi |m|1.

Khi |m|1sẽ tồn tại duy nhất α[π2;π2] thoả mãn sinα=m. Khi đó:

sinx=msinx=sinα [x=α+k2πx=πα+k2π(kZ)

* Chú ý:

a, Nếu số đo của góc αđược cho bằng đơn vị độ thì sinx=sinαo[x=αo+k360ox=180oαo+k360o(kZ)

b, Một số trường hợp đặc biệt

sinx=0x=kπ,kZ.sinx=1x=π2+k2π,kZ.sinx=1x=π2+k2π,kZ.

Đánh giá

0

0 đánh giá