Tính giá trị của biểu thức A = 56 – 5a + 6b tại a = 22, b = 23

884

Với giải Bài 52 trang 55 SBT Toán lớp 7 Cánh diều chi tiết trong Bài tập cuối chương VI giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài tập cuối chương VI

Bài 52 trang 55 sách bài tập Toán lớp 7 Tập 2: Tính giá trị của biểu thức:

a) A = 56 – 5a + 6b tại a = 22, b = 23;

b) B = 6xyz – 3xy – 19z tại x = 11, y = 32, z = 0;

c) C = x2021y – 2 022x2 + 2 023y3 + 7 tại x = –1 và y = 1;

d) D = x4 – 17x3 + 17x2 – 17x + 21 tại x = 16.

Lời giải:

a) Thay a = 22, b = 23 vào A = 56 – 5a + 6b ta có:

A = 56 – 5 . 22 + 6 . 23 = 56 – 110 + 138 = 84.

Vậy tại a = 22, b = 23 thì biểu thức A có giá trị bằng 84.

b) Thay x = 11, y = 32, z = 0 vào B = 6xyz – 3xy – 19z ta có:

B = 6 . 11 . 32 . 0 – 3 . 11 . 32 – 19 . 0

= 0 – 1 056 – 0 = –1 056.

Vậy tại x = 11, y = 32, z = 0 thì biểu thức B có giá trị bằng –1 056.

c) Thay x = –1 và y = 1 vào C = x2021y – 2 022x2 + 2 023y3 + 7 ta có:

C = (–1)2021 . 1 – 2 022 . (–1)2 + 2 023 . 13 + 7

= –1 – 2 022 + 2023 + 7 = 7.

Vậy tại x = –1 và y = 1 thì biểu thức C có giá trị bằng 7.

d) Với x = 16 ta có x + 1 = 17.

Khi đó ta có:

D = x4 – 17x3 + 17x2 – 17x + 21

= x4 – (x + 1) . x3 + (x + 1) . x2 – (x + 1) . x + 21

= x4 – x4 – x3 + x3 + x2 – x2 – x + 21

= – x + 21

Thay x = 16 vào D = – x + 21 ta có:

D = – 16 + 21 = 5.

Vậy tại x = 16 thì biểu thức D có giá trị bằng 5.

Đánh giá

0

0 đánh giá