Bài 6 trang 63 Toán 7 Tập 2 | Chân trời sáng tạo Giải toán lớp 7

2.1 K

Với giải Bài 6 trang 63 Toán lớp 7 Chân trời sáng tạo chi tiết trong Bài 3: Tam giác cân giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 3: Tam giác cân

Bài 6 trang 63 Toán lớp 7 Tập 2: Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b.

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b

a) Cho biết A^1=42°. Tính số đo của M^1,B^1,M^2.

b) Chứng minh MN // BC, MP // AC.

c) Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Lời giải:

a) ΔAMNcó AM = AN nên ΔAMNcân tại A.

Khi đó AMN^=ANM^.

Trong tam giác AMN có: AMN^+ANM^=180°MAN^.

Hay 2M^1=180°A^1=180°42°=138°.

Do đó M^1=69°.

Tam giác ABC có AB = AM + MB, AC = AN + NC.

Mà AM = AN, MB = NC nên AB = AC.

Do đó ΔABCcân tại A.

Khi đó ABC^=ACB^.

Trong tam giác ABC có: ABC^+ACB^=180°BAC^.

Hay 2B^1=180°A^1=180°42°=138°.

Do đó B^1=69°.

Tam giác MBP có MB = MP nên tam giác MBP cân tại M.

Do đó MBP^=MPB^.

Trong tam giác MBP có: BMP^=180°MBP^MPB^.

Hay M^2=180°2B^1=180°2.69°=42°.

Vậy M^1=69°; B^1=69°; M^2=42°.

b) Ta có M^1=B^1=69°, mà hai góc này ở vị trí đồng vị nên MN // BC.

M^2=A^1=42°, mà hai góc này ở vị trí đồng vị nên MP // AC.

c) Xét ΔAMN ΔMBPcó:

AM = MB (theo giả thiết).

MAN^=BMP^(chứng minh trên).

AN = MP (theo giả thiết).

Do đó ΔAMN=ΔMBP(c.g.c).

Suy ra MN = BP (2 cạnh tương ứng).

Xét ΔMBP ΔPMNcó:

MB = PM (theo giả thiết).

BP = MN (chứng minh trên).

MP = PN (theo giả thiết).

Do đó ΔMBP=ΔPMN(c.c.c).

Do MP // AC nên MPN^=PNC^(2 góc so le trong).

Xét ΔPMN ΔNPCcó:

PM = NP (theo giả thiết).

MPN^=PNC^(chứng minh trên).

PN = NC (theo giả thiết).

Do đó ΔPMN=ΔNPC(c.g.c).

Vậy bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Đánh giá

0

0 đánh giá