Sách bài tập Toán 10 Bài 1 (Chân trời sáng tạo): Dấu của tam thức bậc hai

3.4 K

Với giải sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai sách Chân trời sáng tạo hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:

Giải SBT Toán lớp 10 Bài 1: Dấu của tam thức bậc hai

Giải SBT Toán 10 trang 8 Tập 2

Bài 1 trang 8 SBT Toán 10 Tập 2: Tính biệt thức và nghiệm (nếu có) của các tam thức bậc hai sau. Xác định dấu của chúng tại x = -2.

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Ý b

Ý c

Lời giải:

a) Ta có:  ∆ = b2 – 4ac = 32 – 4.( –2).( –4) = –23 < 0 nên f(x) vô nghiệm và f (x) cùng dấu với a với mọi giá trị x.

Ta lại có: a = 0 – 2 < 0 nên tại x = – 2 thì f(– 2) < 0.

Vì vậy f(x) âm tại x = –2.

b) Ta có: ∆ = b2 – 4ac = 82 – 4.2.8 = 0 nên g (x) = 0 có nghiệm kép là:

x0 = b2a = 82.2 = – 2. Do đó g (– 2) = 0.

Vì vậy g(x) không âm cũng không dương tại x = –2.

c) Ta có: ∆ = b2 – 4ac = 72 – 4.3.( – 10 ) = 169 > 0 nên h(x) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

h(– 2) = 3.(– 2)2 + 7.(– 2) – 10 = – 12 < 0.

Vì vậy h(x) âm tại x = – 2.

Giải SBT Toán 10 trang 9 Tập 2

Bài 2 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:

a) fx=2m8x2+2mx+1 là một tam thức bậc hai;

b) fx=2m+3x2+3x4m2 là một tam thức bậc hai có x = 3 là một nghiệm;

c) fx=2x2+mx3 dương tại x = 2.

Lời giải:

a) fx là tam thức bậc hai khi và chỉ khi 2m – 8 ≠ 0 hay m ≠ 4.

b) fx là tam thức bậc hai khi và chỉ khi 2m + 3 ≠ 0 hay m ≠ 32.

Tam thức fx có x = 3 là một nghiệm khi và chỉ khi f (3) = (2m + 3) . 32 + 3.3 – 4m2 = 0

Suy ra – 4m+ 18m + 36 = 0 hay – 2m+ 9m + 18 = 0

Ta có: ∆ = b2 – 4ac = 92 – 4.( –2 ).18 = 225 > 0 nên phương trình ẩn m có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Vậy m = 6 thỏa mãn f(x) là tam thức bậc hai có x = 3 là một nghiệm.

c) fx=2x2+mx3 dương tại x = 2 khi và chỉ khi f (2) = 2.22 + 2m – 3 > 0

Suy ra 2m + 5 > 0  m > 52.

Vậy m > 52 thì f(x) dương tại x = 2.

Bài 3 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:

a) fx=m2+9x2+m+6x+1 là một tam thức bậc hai có một nghiệm duy nhất;

b) fx=m1x2+3x+1 là một tam thức bậc hai có hai nghiệm phân biệt;

c) fx=mx2+m+2x+1 là một tam thức bậc hai vô nghiệm.

Lời giải:

a) fx là một tam thức bậc hai khi và chỉ khi m2 + 9 ≠ 0, mà m2 + 9 > 0, đúng với mọi m  R.

fx có một nghiệm duy nhất khi ∆ = b2 – 4ac = (m + 6)2 – 4.(m2 + 9).1 = 0

 –3m2 + 12m = 0

 3m.(4 – m) = 0

 m = 0 hoặc m = 4

Vậy m = 0 hoặc m = 4 là một tam thức bậc hai có một nghiệm duy nhất.

b) fx là một tam thức bậc hai khi và chỉ khi m – 1 ≠ 0 hay m ≠ 1.

fx có hai nghiệm phân biệt khi và chỉ khi ∆ = b2 – 4ac = 32 – 4. (m – 1 ).1 > 0

 13 – 4m > 0

 m < 134.

Vậy m < 134 thì f(x) là một tam thức bậc hai có hai nghiệm phân biệt.

c) f(x) là một tam thức bậc hai khi a = m ≠ 0.

Ta có:  = (m + 2)2 – 4m = m2 + 4 > 0

Để f(x) vô nghiệm thì ∆ < 0 ⇔ m2 + 4 < 0

Mà m2 + 4 > 0 với mọi m nên không tồn tại giá trị của m thỏa mãn.

Vậy không có giá trị nào của m thỏa mãn yêu cầu.

Bài 4 trang 9 SBT Toán 10 Tập 2: Dựa vào đồ thị của các hàm số bậc hai được cho trong hình dưới đây, xét dấu của tam thức bậc hai tương ứng:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Quan sát hình vẽ a), ta thấy:

Đồ thị hàm số nằm trên trục hoành khi x < – 2,5 hoặc x > 3 hay f(x) > 0 khi x  ( – ∞; – 2,5)  (3; + ∞).

Đồ thị cắt trục hoành tại hai điểm x = – 2,5 và x = 3 hay f(x) = 0 khi x = – 2,5 và x = 3.

Đồ thị hàm số nằm dưới trục hoành khi – 2,5 < x < 3 hay f(x) < 0 khi x  (– 2,5; 3).

b) Quan sát hình vẽ b) ta thấy:

Đồ thị hàm số nằm trên trục hoành khi x ≠ –1 hay g(x) > 0 khi x ≠ –1.

Đồ thị cắt trục hoành tại điểm x =  –1 hay fgx) = 0 khi x = – 1.

c) Đồ thị hàm số nằm dưới trục hoành với mọi x   hay f(x) < 0 với mọi x  .

Bài 5 trang 9 SBT Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Ý b

Ý c

Ý d

Ý e

Ý g

Lời giải:

a) Ta có: ∆ = b2 – 4ac = (– 5)2 – 4.1.4 = 9 > 0 nên f (x) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = 1 > 0, ∆ > 0 và có hai nghiệm x1 = 1, x2 = 4 nên áp dụng định lí dấu tam thức bậc hai, ta có:

f (x) âm trong khoảng (1;  4).

f (x) dương trong khoảng (–∞; 1) và (4; +∞).

b) Ta có: ∆ = b2 – 4ac = 22 – 4.13.( –3) = 0 nên f (x) có nghiệm kép x0 = -b2a = 3.

Như vậy, f (x) có a = 13 < 0, ∆ = 0 nên f (x) âm với mọi x ≠ 3.

c) Ta có: ∆ = b2 – 4ac = 62 – 4.3.4 = –12 < 0, a = 3 > 0 nên f (x) dương với mọi x  .

d) Ta có: ∆ = b2 – 4ac = 32 – 4.(–2).5 = 49 > 0 nên f (x) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = –2  < 0, ∆ > 0 và có hai nghiệm x1 = –1, x2 = 52 nên:

f (x) dương trong khoảng ( –1; 52).

f (x) âm trong khoảng (–52; –1) và (52; +).

e) Ta có: ∆ = b2 – 4ac = 32 – 4.( –6 ) .( –1 ) = –15 < 0, a = –6  < 0 nên f ( x ) âm với mọi x  .

g) Ta có: ∆ = b2 – 4ac = 122 – 4.4.9 = 0 nên f (x) có nghiệm kép 32

Như vậy, f (x) có a = 4 > 0, ∆ = 0 nên f (x) dương với mọi x ≠ 32.

Bài 6 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:

a) fx=m+1x2+5x+2 là tam thức bậc hai không đổi dấu trên ℝ,

b) fx=mx27x+4 là tam thức bậc hai âm với mọi x  ℝ;

c) fx=3x24x+3m1 là tam thức bậc hai dương với mọi x  ℝ;

d) fx=m2+1x23mx+1 là tam thức bậc hai âm với mọi x  ℝ.

Lời giải:

a) f (x) là tam thức bậc hai khi và chỉ khi m + 1 ≠ 0 hay m ≠  –1

f (x) không đổi dấu trên ℝ khi và chỉ khi ∆ = b2 – 4ac = 52 – 4.( m + 1 ). 2 < 0

 17 – 8m < 0

 m > 178.

Vậy m > 178 thỏa mãn yêu cầu đề bài.

b) f (x) là tam thức bậc hai âm với mọi x  ℝ khi và chỉ khi m < 0 và

∆ = b2 – 4ac = 49 – 16m < 0  m > 4916 

Do đó m thỏa mãn đồng thời m < 0 và m > 4916 (vô lí).

Vậy không tồn tại m thỏa mãn yêu cầu đề bài.

c) Do f (x) có a = 3 > 0 nên f (x) là tam thức bậc hai dương với mọi x  ℝ khi và chỉ khi ∆’ = 4 – 3.(3m – 1 ) < 0

 7 – 9m < 0

 m > 79

Vậy m > 79 thoả mãn yêu cầu đề bài.

d) f (x) là tam thức bậc hai âm với mọi x  ℝ khi và chỉ khi a = m2 + 1 < 0 và ∆ < 0.

Ta có m2 ≥ 0 với mọi x  ℝ 

 a = m2 + 1 > 0 với mọi x  ℝ.

Như vậy không tồn tại m thỏa mãn yêu cầu đề bài.

Giải SBT Toán 10 trang 10 Tập 2

Bài 7 trang 10 SBT Toán 10 Tập 2: Chứng minh rằng:

a) 2x2+3x+1>0 với mọi x  ℝ;

b) x2+x+140với mọi x  ℝ,

c) x2<2x+3 với mọi x  ℝ.

Lời giải:

a) Tam thức bậc hai 2x2+3x+1 có a = 2 > 0, ∆ = 3 – 4.2.1 = –5 < 0 với mọi  ℝ. Như vậy 2x2+3x+1>0 với mọi x  ℝ.

b) Tam thức bậc hai x2+x+14 có a = 1 > 0, ∆ = 1 – 4.1.14 = 0 nên x2+x+140 với mọi x  ℝ.

c) Tam thức bậc hai –x2 + 2x – 3 có a = –1 < 0, ∆ = 4 – 4.( –1).( –3) = –8 < 0 với mọi x  ℝ. Như vậy –x2 + 2x – 3 < 0 với mọi x  ℝ hay x2<2x+3 với mọi x  ℝ.

Bài 8 trang 10 SBT Toán 10 Tập 2: Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai fx=ax2+bx+c trong mỗi trường hợp sau:

a) Đồ thị của hàm số y=fx đi qua ba điểm có toạ độ là (– 1; – 4), (0; 3) và (1; –14);

b) Đồ thị của hàm số y = f(x) đi qua ba điểm có toa độ là (0; –2), (2; 6) và (3; 13);

c) f(– 5) = 33, f (0) = 3 và f(2) = l9.

Lời giải:

a) Theo đề bài:

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (– 1; – 4) nên –4 = a – b + c (1)

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (0; 3) nên 3 = c (2)

Đồ thị của hàm số y = f(x) đi qua điểm có toạ độ là (1; – 14) nên –14 = a + b + c (3)

Thay (2) vào phương trình (1) và (3) ta có:

ab=7a+b=172a=24a+b=17a=1212+b=17a=12b=5 

Vậy f (x) = –12x2 – 5x + 3.

Xét f ( x ) = –12x2 – 5x + 3 có ∆ = (– 5)2 – 4.(–12).3 = 169 > 0 nên f (x) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = –12 < 0, ∆ > 0 và có hai nghiệm x1 = –34, x2 = 13  nên:

f (x) dương trong khoảng ( –3413 ).

f (x) âm trong khoảng -;-34 và 13;+

b) Ta có:

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (0; – 2) nên –2 = c (1)

Đồ thị của hàm số y=fx đi qua ba điểm có toạ độ là (2; 6) nên 6 = 4a + 2b + c (2)

Đồ thị của hàm số y=fx đi qua ba điểm có toạ độ là (3; 13) nên 13 = 9a + 3b + c (3).

Thay (1) vào phương trình (2) và (3) ta có:

4a + 2b=89a+3b=152a + b=43a+b=5=13.1+b=5=1b=2 

Do đó f (x) = x2 + 2x – 2.

Xét f ( x ) = x2 + 2x – 2 có ∆ = 22 – 4.( –2 ).1 = 12 nên f ( x ) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = 1 > 0, ∆ > 0 và có hai nghiệm x1 = –1 + 3, x2 = –1 – 3 nên:

f (x) âm trong khoảng ( –1 – 3; –1 + 3 ).

f (x) dương trong khoảng Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

c) Ta có:

f(– 5) = 33 nên 33 = 25a – 5b + c (1)

f (0) = 3 nên 3 = c (2)

f(2) = 19 nên 19 = 4a + 2b + c (3)

Thay (2) vào phương trình (1) và (3) ta có 25a5b=304a+2b=16 . Giải hệ phương trình ta được a = 2 và b =  4.

Vậy f (x) = 2x2 + 4x + 3.

Xét f (x) = 2x2 + 4x +3 có ∆ = 42 – 4.2.3 = –8 < 0, a = 2 > 0 nên f (x) dương với mọi x  ℝ.

Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 6

Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Lý thuyết Dấu của tam thức bậc hai

1. Tam thức bậc hai

– Đa thức bậc hai f(x) = ax2 + bx + c với a, b, c là các hệ số, a ≠ 0 và x là biến số được gọi là tam thức bậc hai.

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khi thay x bằng giá trị x0 vào f(x), ta được  gọi là giá trị của tam thức bậc hai  tại x0.

• Nếu f(x0) > 0 thì ta nói f(x) dương tại x0.

• Nếu f(x0) < 0 thì ta nói f(x) âm tại x0.

• Nếu f(x) dương (âm) tại mọi điểm x thuộc một khoảng hoặc một đoạn thì ta nói f(x) dương (âm) trên khoảng hoặc đoạn đó.

Ví dụ: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 3.

a) f(x) = x+ 2x4 – 2;

b) f(x) = –x2 + 2x – 3;

c) f(x) = 3x2 – 5x.

Hướng dẫn giải

a) Biểu thức f(x) = x+ 2x4 – 2 không phải là tam thức bậc hai vì có chứa x4.

b) Biểu thức f(x) = –x2 + 2x – 3 là tam thức bậc hai với a = –1, b = 2 và c = –3.

Khi x = 3 ta có:

f(3) = –32 + 2.3 – 3 = = –9 + 6 – 3 = –6 < 0.

Do đó f(x) âm tại x = 3.

c) Biểu thức f(x) = 3x2 – 5x là tam thức bậc hai với a = 3, b = -5  và c = 0.

Khi x = 3 ta có:

f(3) = 3.32 – 5.3 = 27 – 35 > 0

Do đó f(x) dương tại x = 3.

– Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khi đó:

• Nghiệm của phương trình bậc hai ax2 + bx + c là nghiệm của f(x).

• Biểu thức ∆ = b2 – 4ac và Δ'=b22ac lần lượt là biệt thức và biệt thức rút gọn của f(x).

Ví dụ: Tìm biệt thức (hoặc biệt thức thu gọn) và nghiệm (nếu có) của các tam thức bậc hai sau:

a) f(x) = x2 + 2x – 5;

b) f(x) = = –3x2 + 18x – 27;

c) f(x) = x + x2 + 1.

Hướng dẫn giải

a) f(x) = x2 + 2x – 5 có ∆' = 12 – 1.(–5) = 6 > 0.

Do đó f(x) có hai nghiệm phân biệt là:

x1=1+6 và  x2=16

Vậy tam thức bậc hai đã cho có hai nghiệm là x1=1+6  và x2=16  

b) f(x) = –3x2 + 18x – 27

f(x) có ∆' = 92 – (‒3).(–27) = 0

Do đó f(x) có nghiệm kép là x=93=3  

Vậy tam thức bậc hai đã cho có nghiệm là x = 3.

c) f(x) = x + x2 + 1 = x2 + x + 1.

f(x) có ∆ = 12 – 4.1.1 = –3 < 0.

Do đó f(x) vô nghiệm.

Vậy tam thức bậc hai đã cho vô nghiệm.

2. Định lí về dấu của tam thức bậc hai

Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0).

+  Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.

+ Nếu ∆ = 0 và x0=b2a là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x khác x0.

+ Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì:

• f(x) trái dấu với a với mọi x trong khoảng (x1; x2);

• f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1), (x2; +∞).

Chú ý:

+ Để xét dấu tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta thực hiện các bước sau:

Bước 1: Tính và xác định dấu của biệt thức ∆;

Bước 2: Xác định nghiệm của f(x) (nếu có);

Bước 3: Xác định dấu của hệ số a;

Bước 4: Xác định dấu của f(x).

+ Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn ∆' thay cho biệt thức ∆.

Ví dụ: Xét dấu của các tam thức bậc hai sau:

a) f(x) = 3x2 + 6x – 9;

b) f(x) = –2x2 + 8x + 10;

c) f(x) = 4x2 + 8x + 4;

d) f(x) = –3x2 + 2x – 1.

Hướng dẫn giải

a) f(x) = 3x2 + 6x – 9

f(x) có a = 3 > 0 và ∆' = 32 – 3.(–9) = 36 > 0.

Khi đó f(x) có hai nghiệm phân biệt là:

x1=3+363=1 và  x1=3-363=-3

Ta có bảng xét dấu của f(x) như sau:

x

–∞

 

–3

 

1

 

+∞

f(x)

 

+

0

0

+

 

Vậy, f(x) dương trong khoảng (–∞; –3) và (1; +∞);

f(x) âm trong khoảng (–3; 1).

b) f(x) = –2x2 + 8x + 10

f(x) có a = –2 < 0 và ∆' = 42 – (–2).10 = 36 > 0.

Khi đó f(x) có hai nghiệm phân biệt là:

x1=4+362=1 và  x2=4362=5

Ta có bảng xét dấu của f(x) như sau:

x

–∞

 

–1

 

5

 

+∞

f(x)

 

0

+

0

 

Vậy, f(x) âm trong khoảng (–∞; –1) và (5; +∞);

f(x) dương trong khoảng (–1; 5).

c) f(x) = 4x2 + 8x + 4

f(x) có a = 4 > 0 và ∆' = 42 – 4.4 = 0.

Khi đó f(x) có nghiệm kép là x=44=1   

Vậy, f(x) dương với mọi x ≠ –1.

d) f(x) = –3x2 + 2x – 1.

f(x) có a = –3 < 0 và ∆' = 12 – (–3).(–1) = –2 < 0.

Vậy f(x) âm với mọi x ∈ ℝ.

Đánh giá

0

0 đánh giá