Với giải ý b Bài 8 trang 10 SBT Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài 1: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 10 Bài 1: Dấu của tam thức bậc hai
Bài 8 trang 10 SBT Toán 10 Tập 2: Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai trong mỗi trường hợp sau:
b) Đồ thị của hàm số y = f(x) đi qua ba điểm có toa độ là (0; –2), (2; 6) và (3; 13);
c) f(– 5) = 33, f (0) = 3 và f(2) = l9.
Lời giải:
b) Ta có:
Đồ thị của hàm số đi qua điểm có toạ độ là (0; – 2) nên –2 = c (1)
Đồ thị của hàm số đi qua ba điểm có toạ độ là (2; 6) nên 6 = 4a + 2b + c (2)
Đồ thị của hàm số đi qua ba điểm có toạ độ là (3; 13) nên 13 = 9a + 3b + c (3).
Thay (1) vào phương trình (2) và (3) ta có:
Do đó f (x) = x2 + 2x – 2.
Xét f ( x ) = x2 + 2x – 2 có ∆ = 22 – 4.( –2 ).1 = 12 nên f ( x ) có hai nghiệm phân biệt lần lượt là:
Như vậy, f (x) có a = 1 > 0, ∆ > 0 và có hai nghiệm x1 = –1 + , x2 = –1 – nên:
f (x) âm trong khoảng ( –1 – ; –1 + ).
f (x) dương trong khoảng
c) Ta có:
f(– 5) = 33 nên 33 = 25a – 5b + c (1)
f (0) = 3 nên 3 = c (2)
f(2) = 19 nên 19 = 4a + 2b + c (3)
Thay (2) vào phương trình (1) và (3) ta có . Giải hệ phương trình ta được a = 2 và b = 4.
Vậy f (x) = 2x2 + 4x + 3.
Xét f (x) = 2x2 + 4x +3 có ∆ = 42 – 4.2.3 = –8 < 0, a = 2 > 0 nên f (x) dương với mọi x ∈ ℝ.
Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:...
Bài 3 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:...
Bài 5 trang 9 SBT Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau:...
Bài 6 trang 9 SBT Toán 10 Tập 2: Tìm các giá trị của tham số m để:...
Bài 7 trang 10 SBT Toán 10 Tập 2: Chứng minh rằng:...
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Dấu của tam thức bậc hai
Bài 2: Giải bất phương trình bậc hai một ẩn
Bài 3: Phương trình quy về phương trình bậc hai