Với giải HĐ 1 trang 81 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
HĐ 1 trang 81 Toán lớp 7: Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.
a) Chứng minh rằng ABD = ACD theo trường hợp cạnh - cạnh - cạnh.
b) Hai góc B và C của tam giác ABC có bằng nhau không?
Phương pháp giải:
a) Chứng minh ba cạnh của 2 tam giác trên bằng nhau
b) Từ câu a) suy ra 2 cặp góc tương ứng bằng nhau.
Lời giải:
a) Xét hai tam giác ABD và ACD có:
AB=AC (do tam giác ABC cân tại A).
AD chung
BD=DC (do D là trung điểm của đoạn thẳng BC).
=>ABD = ACD (c.c.c)
b) Do ABD = ACD nên ( 2 góc tương ứng)
Lý thuyết Tam giác cân và tính chất
• Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau.
Ví dụ: Trong hình dưới đây, có cạnh AB = AC được gọi là tam giác cân tại đỉnh A, hai cạnh AB và AC là hai cạnh bên, BC là cạnh đáy, và là hai góc ở đáy, là góc ở đỉnh.
• Tính chất:
+ Trong tam giác cân, hai góc ở đáy bằng nhau.
+ Tam giác có hai góc ở đáy bằng nhau thì tam giác đó là tam giác cân.
Ví dụ: Tam giác ABC cân tại A thì =. Ngược lại, tam giác ABC có =thì tam giác ABC cân tại A.
Chú ý:
• Tam giác đều là tam giác có ba cạnh bằng nhau. Khi đó ba góc cũng bằng nhau và bằng 60°.
Ví dụ: Tam giác ABC có AB = AC = BC thì tam giác ABC được gọi là tam giác đều. Tam giác ABC đều có = == 60°.
• Một tam giác có ba cạnh hoặc ba góc bằng nhau thì tam giác ấy là tam giác đều.
• Tam giác cân có 1 góc bằng 60° thì tam giác ấy là tam giác đều.
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Bài 17: Thu nhập và phân loại dữ liệu