Với giải Bài 4.26 trang 84 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Bài 4.26 trang 84 Toán lớp 7: Tam giác vuông có hai cạnh bằng nhau được gọi là tam giác vuông cân.
Hãy giải thích các khẳng định sau:
a) Tam giác vuông cân thì cân tại đỉnh góc vuông;
b) Tam giác vuông cân có hai góc nhọn bằng 45°;
c) Tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Phương pháp giải:
Lời giải:
a)Do tổng ba góc trong 1 tam giác bằng 180 độ nên tam giác không thể có 2 góc vuông
=>Tam giác vuông cân sẽ có 2 góc nhọn bằng nhau
=> Tam giác vuông cân thì cân tại đỉnh góc vuông.
b) Giả sử hai góc nhọn trong tam giác vuông là x, ta có:
Vậy tam giác vuông cân có hai góc nhọn bằng 45°.
a) Gọi góc còn lại của tam giác vuông có 1 góc nhọn bằng 45° là x, ta có:
Vậy tam giác vuông có một góc nhọn bằng 45° là tam giác vuông cân.
Bài tập vận dụng:
Bài 1. Cho tam giác ABC cân tại A. Kẻ BH và CK lần lượt vuông góc với AC và AB (H ∈ AC; K ∈ AB). Chứng minh rằng BH = CK.
Hướng dẫn giải
Xét tam giác BHA (vuông tại H) và tam giác CKA (vuông tại K) có:
AB = AC ( cân tại A)
là góc chung
⇒ (cạnh huyền – góc nhọn)
⇒ BH = CK (hai cạnh tương ứng)
Vậy BH = CK (đpcm).
Bài 2. Cho tam giác ABC cân tại A. I là trung điểm của đoạn thẳng BC. Chứng minh AI vuông góc với BC và AI là tia phân giác của góc BAC.
Hướng dẫn giải
Xét tam giác AIB và tam giác AIC có:
AB = AC ( cân tại A)
BI = CI (theo giả thiết)
AI là cạnh chung
⇒ (c.c.c)
⇒ (hai góc tương ứng)
Mà
⇒
⇒ AI ⊥ BC (đpcm)
Vì (chứng minh trên)
⇒ (hai góc tương ứng)
⇒ AI là tia phân giác của góc BAC (đpcm).
Bài 3. Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh tam giác ADE là tam giác cân.
Hướng dẫn giải
cân tại A ⇒ (tính chất)
Mà: (hai góc kề bù)
(hai góc kề bù)
Do đó,
Xét tam giác ADB và tam giác AEC có:
AB = AC ( cân tại A)
(chứng minh trên)
BD = CE (theo giả thiết)
⇒ (c.g.c)
⇒ AD = AE (hai cạnh tương ứng)
⇒ cân tại A (đpcm).
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Bài 17: Thu nhập và phân loại dữ liệu