Sách bài tập Toán 7 Bài 16 (Kết nối tri thức): Tam giác cân. Đường trung trực của đoạn thẳng

4.5 K

Với giải sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:

Giải SBT Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Giải Toán 7 trang 68 Tập 1

Bài 4.41 trang 68 Toán 7 Tập 1: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC (kí hiệu bằng nhau trên hình)

Do đó, tam giác ABC cân tại đỉnh A.

+ Áp dụng định lí tổng 3 góc trong tam giác DEF, ta có:

D^+E^+F^=180°

Suy ra F^=180°D^+E^=180°70°+50°=60°.

Do đó ta có, D^E^F^. Vậy tam giác DEF không phải tam giác cân.

+ Tam giác MNP có N^=P^   =50°.

Do đó, tam giác MNP cân tại đỉnh M.

+ Áp dụng định lí tổng 3 góc trong tam giác KGH, ta có:

K^+G^+H^=180°

Suy ra H^=180°K^+G^=180°40°+70°=70°.

Do đó tam giác KGH có G^=H^=70°.

Vậy tam giác KGH cân tại đỉnh K.

Bài 4.42 trang 68 Toán 7 Tập 1: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.

Suy ra C^=B^=65°.

Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:

A^+B^+C^=180°

Suy ra A^=180°B^+C^=180°65°+65°=50°.

+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.

Suy ra M^=N^.

Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:

M^+N^+P^=180°

M^+M^=180°P^2M^=180°P^

M^=180°P^2=180°75°2=52,5°.

Vậy M^=N^=52,5°.

Giải Toán 7 trang 69 Tập 1

Bài 4.43 trang 69 Toán 7 Tập 1: Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Tam giác ABE vuông tại E, do đó:

A^+ABE^=90°ABE^=90°A^.

Tam giác ACF vuông tại F, do đó:

A^+ACF^=90°ACF^=90°A^.

Từ đó, suy ra ABE^=ACF^.

Xét tam giác vuông AEB và tam giác vuông AFC có:

BE = CF (theo giả thiết)

ABE^=ACF^ (cmt)

Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).

Suy ra AB = AC (hai cạnh tương ứng).

Vậy tam giác ABC cân tại đỉnh A.

Bài 4.44 trang 69 Toán 7 Tập 1: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:

a) ∆ABD vuông tại B.

b) ∆ABD = ∆BAC.

c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác AMC và tam giác DMB có:

MA = MD (gt)

MB = MC (M là trung điểm của BC)

AMC^=DMB^ (hai góc đối đỉnh)

Do đó, ∆AMC = ∆DMB (c – g – c).

Suy ra DBM^=ACM^ (hai góc tương ứng).

Do tam giác ABC vuông tại A nên ABC^+ACM^=ABC^+ACB^=90°.

Khi đó, ta có: ABD^=ABC^+CBD^=ABC^+DBM^ABC^+ACM^=90°.

Suy ra ABD^=90°.

Vậy tam giác ABD vuông tại B.

b) Xét tam giác vuông ABD và tam giác vuông BAC có:

BD = AC (do ∆AMC = ∆DMB)

AB: cạnh chung

Do đó, ∆ABD = ∆BAC (hai cạnh góc vuông).

c) Do tam giác ABC vuông tại A nên AC  AB tại A.

Tam giác ABD vuông tại B nên DB  AB tại B.

Suy ra AC // DB (do cùng vuông góc với AB).

BDA^=CAD^ (hai góc so le trong).

Lại có: ACB^=BDA^ (do ∆ABD = ∆BAC).

Do đó, CAD^=ACB^, hay CAM^=ACM^.

Suy ra tam giác AMC cân tại đỉnh M.

Khi đó MA = MC.

Mà MB = MC (do M là trung điểm của BC).

Nên MA = MB = MC.

Do đó, tam giác AMB cân tại đỉnh M.

Bài 4.45 trang 69 Toán 7 Tập 1: Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:

a) Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).

b) Hai đường phân giác BE, CF bằng nhau (H.4.50b).

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Do BM và CN là đường trung tuyến của tam giác ABC nên M và N lần lượt là trung điểm của AC và AB.

Khi đó, AM=MC=AC2;  AN=NB=AB2.

Mà AB = AC (do tam giác ABC cân tại đỉnh A).

Do đó, AM = MC = AN = NB.

Xét tam giác ABM và tam giác ACN có:

AB = AC

A^: góc chung

AM = AN

Do đó, ∆ABM = ∆ACN (c – g – c).

Suy ra BM = CN (đpcm).

b) Do BE là đường phân giác của góc ABC nên ABE^=12ABC^.

Và CF là đường phân giác của góc ACB nên ACF^=12ACB^.

Lại có ABC^=ACB^ (do tam giác ABC cân tại đỉnh A).

Do đó, ABE^=ACF^.

Xét tam giác ABE và tam giác ACF có:

A^: góc chung

AB = AC

ABE^=ACF^

Do đó, ∆ABE = ∆ACF (g – c – g)

Suy ra, BE = CF (đpcm).

Bài 4.46 trang 69 Toán 7 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:

a) ∆AEB và ∆DEC là các tam giác cân đỉnh E.

b) AB // CD.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

a) Xét tam giác vuông ADB và tam giác vuông BCA có:

AB: cạnh huyền chung

AD = CB (gt)

Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).

Suy ra DBA^=CAB^.

Khi đó tam giác EAB cân tại đỉnh E.

Xét tam giác vuông ADE và tam giác vuông BCE có:

AD = CB (gt)

EA = EB (∆EAB cân tại đỉnh E)

Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).

Suy ra ED = EC.

Do đó, tam giác EDC cân tại đỉnh E.

b) Theo định lí tổng 3 góc trong tam giác EAB, ta có:

EBA^+EAB^+AEB^=180°

Mà EBA^=EAB^ (chứng minh trên)

Suy ra EBA^=180°AEB^2.      (1)

Theo định lí tổng 3 góc trong tam giác EDC, ta có:

EDC^+ECD^+DEC^=180°

Mà EDC^=ECD^ (∆ECD cân tại đỉnh E).

Suy ra EDC^=180°DEC^2.      (2)

Ta lại có: AEB^=DEC^ (hai góc đối đỉnh).    (3)

Từ (1), (2) và (3) suy ra EBA^=EDC^, hay DBA^=BDC^.

Mà hai góc này ở vị trí so le trong.

Vậy AB // DC.

Giải Toán 7 trang 70 Tập 1

Bài 4.47 trang 70 Toán 7 Tập 1: Cho tam giác ABH vuông tại đỉnh H có ABH^=60°. Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = AB2.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

+ Xét tam giác vuông ABH và tam giác vuông ACH có:

AH: cạnh chung

HB = HC (gt)

Do đó, ∆ABH = ∆ACH (hai cạnh góc vuông).

Suy ra AB = AC.   (1)

Do đó, tam giác ABC cân tại đỉnh A.

 C^=B^=ABH^=60°.

Ta có: BAC^+B^+C^=180° (định lí tổng ba góc trong tam giác).

Suy ra BAC^=180°B^C^=180°60°60°=60°.

Khi đó B^=BAC^, do đó tam giác ABC cân tại đỉnh C nên  AC = BC. (2)

Từ (1) và (2) suy ra AB = AC = BC.

Do đó, ∆ABC đều.

+ Vì H thuộc BC và điểm H nằm giữa điểm B và điểm C, hơn nữa HB = HC, do đó H là trung điểm của BC.

Suy ra BH=BC2.

Mà BC = AB (chứng minh trên).

Vậy BH = AB2.

Bài 4.48 trang 70 Toán 7 Tập 1: Đường thẳng d trong hình nào dưới đây là trung trực của đoạn thẳng AB?

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.

Do đó, trong các Hình 4.53, chỉ có đường thẳng d trong Hình 4.53a là đường trung trực của đoạn thẳng.

Bài 4.49 trang 70 Toán 7 Tập 1: Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?

a) AB = AC.

b) Tam giác ABC đều.

c) ABC^=ACB^.

d) Tam giác ABC cân tại đỉnh A.

Hướng dẫn giải

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Điểm A thuộc đường trung trực của BC nên AB = AC (điểm thuộc đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó).

Do đó, ∆ABC cân tại đỉnh A.

Suy ra ABC^=ACB^.

Vậy các câu a), c), d) đúng.

Câu b) chưa đúng vì ta chưa đủ dữ kiện để tam giác ABC đều, do ta chỉ có AB = AC, và độ dài đoạn thẳng BC bất kì.

Bài 4.50 trang 70 Toán 7 Tập 1: Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: MBA^=MCA^.

Sách bài tập Toán 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng - Kết nối tri thức (ảnh 1)

Hướng dẫn giải

Xét tam giác vuông ABH và tam giác vuông ACH có:

AB = AC (∆ABC cân tại đỉnh A)

AH: cạnh chung

Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).

Suy ra BAH^=CAH^, hay BAM^=CAM^.

Xét tam giác ABM và ACM có:

AB = AC (∆ABC cân tại đỉnh A)

BAM^=CAM^

AM: cạnh chung

Do đó, ∆ABM = ∆ACM (c – g – c).

Suy ra MBA^=MCA^.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Ôn tập chương 4

Bài 17: Thu thập và phân loại dữ liệu

Bài 18: Biểu đồ hình quạt tròn

Lý thuyết Tam giác cân. Đường trung trực của đoạn thẳng

1. Tam giác cân và tính chất

• Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau.

Ví dụ: Trong hình dưới đây, ΔABCcó cạnh AB = AC được gọi là tam giác cân tại đỉnh A, hai cạnh AB và AC là hai cạnh bên, BC là cạnh đáy, B^ C^là hai góc ở đáy, A^ là góc ở đỉnh.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 1)

• Tính chất:

+ Trong tam giác cân, hai góc ở đáy bằng nhau.

+ Tam giác có hai góc ở đáy bằng nhau thì tam giác đó là tam giác cân.

Ví dụ: Tam giác ABC cân tại A thì B^=C^. Ngược lại, tam giác ABC có B^=C^thì tam giác ABC cân tại A.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 2)

Chú ý:

• Tam giác đều là tam giác có ba cạnh bằng nhau. Khi đó ba góc cũng bằng nhau và bằng 60°.

Ví dụ: Tam giác ABC có AB = AC = BC thì tam giác ABC được gọi là tam giác đều. Tam giác ABC đều có A^= B^=C^= 60°.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 3)

• Một tam giác có ba cạnh hoặc ba góc bằng nhau thì tam giác ấy là tam giác đều.

• Tam giác cân có 1 góc bằng 60° thì tam giác ấy là tam giác đều.

2. Đường trung trực của một đoạn thẳng

• Định nghĩa: Đường thẳng vuông góc với đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.

Ví dụ: Đường thẳng d vuông góc với đoạn AB tại M và M là trung điểm của AB. Khi đó d được gọi là đường trung trực của đoạn thẳng AB.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 4)

• Đường trung trực của đoạn thẳng cũng là trục đối xứng của đoạn thẳng đó.

• Tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó.

Ví dụ: Đường thẳng d là đường trung trực của đoạn thẳng AB và D ∈ d.

Khi đó DA = DB.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 5)

• Đường trung trực của đoạn thẳng là tập hợp tất cả các điểm cách đều hai mút của đoạn thẳng đó.

Chú ý:

• Cách vẽ đường trung trực của đoạn thẳng bằng compa và thước thẳng.

Chẳng hạn: Vẽ đường thẳng d là đường trung trực của đoạn thẳng AB như sau:

+ Vẽ đoạn thẳng AB;

+ Lấy A làm tâm, vẽ cung tròn (bán kính lớn hơn AB2). Sau đó lấy B làm tâm, vẽ cung tròn cùng bán kính sao cho hai cung này cắt nhau tại hai điểm M và N;

+ Dùng thước thẳng vẽ đường thẳng đi qua M và N. Đường thẳng đó là đường trung trực của đoạn thẳng AB.

Lý thuyết Toán 7 Kết nối tri thức Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng (ảnh 6)

Đánh giá

0

0 đánh giá