Cho tam giác đều ABC có cạnh bằng 6 cm. Nêu các vẽ đường tròn ngoại tiếp tam giác ABC

220

Với giải Bài 1 trang 68 Toán 9 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bài 1 trang 68 Toán 9 Tập 2: Cho tam giác đều ABC có cạnh bằng 6 cm.

a) Nêu các vẽ đường tròn ngoại tiếp tam giác ABC.

b) Nêu các vẽ đường tròn nội tiếp tam giác ABC.

c) Tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.

Lời giải:

a) Cách vẽ đường tròn ngoại tiếp tam giác ABC:

− Vẽ đường trung trực a của đoạn thẳng AB.

− Vẽ đường trung trực b của đoạn thẳng AC.

− Gọi O là giao điểm của a và b.

− Vẽ đường tròn tâm O bán kính OA.

Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.

Bài 1 trang 68 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

b) Cách vẽ đường tròn nội tiếp tam giác ABC:

− Vẽ đường phân giác AH của góc BAC.

− Vẽ đường phân giác BE của góc ABC.

− Gọi O là giao điểm của AH và BE.

− Vẽ đường tròn tâm O bán kính OH.

Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.

Bài 1 trang 68 Toán 9 Tập 2 Chân trời sáng tạo | Giải Toán 9

c) Vì tam giác ABC đều nên O cũng là trọng tâm của ∆ABC.

Theo định lí Pythagore, ta có: AB2 = AH2 + BH2.

Suy ra AH=AB2BH2=6232=33  (cm).

Bán kính đường tròn ngoại tiếp tam giác ABC là:

R=OA=23AH=2333=23  (cm).

 

Bán kính đường tròn nội tiếp tam giác ABC là:

r=OH=13AH=1333=3  (cm).

Vậy R=23  cm;  r=3  cm.

Đánh giá

0

0 đánh giá