Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác chi tiết sách Toán 9 Tập 2 Chân trời sáng tạo giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 1: Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
Lời giải:
Sau bài học này ta giải quyết được bài toán như sau:
− Vị trí điểm O để xây trường học cần cách đều 3 điểm A, B, C nên O là tâm đường tròn ngoại tiếp tam giác ABC.
− Vị trí điểm I để lập trạm cứu hộ cần cách đều 3 con đường AB, BC, CA nên I là tâm đường tròn nội tiếp tam giác ABC.
1. Đường tròn ngoại tiếp tam giác
a) So sánh độ dài của đoạn thẳng OA, OB và OC.
b) Vẽ đường tròn đi qua ba điểm A, B, C.
Lời giải:
a) Vì O thuộc đường trung trực của AB.
Suy ra OA = OB (tính chất đường trung trực) (1).
Vì O thuộc đường trung trực của BC.
Suy ra OC = OB (tính chất đường trung trực) (2).
Từ (1) và (2) suy ra OA = OB = OC.
b) Từ câu a, ta có OA = OB = OC nên O là tâm đường tròn đi qua ba điểm A, B, C.
Ta có đường tròn đi qua ba điểm A, B, C như hình vẽ.
a) Tam giác đều MNP có cạnh bằng 4;
b) Tam giác EFG có EF = 5 cm; EG = 3 cm; FG = 4 cm.
Lời giải:
a) Vẽ đường cao MH của giác MNP, gọi O là điểm nằm trên MH sao cho OM = MH.
Do tam giác MNP đều nên O vừa là trọng tâm vừa là giao điểm của ba đường trung trực.
Bán kính đường tròn ngoại tiếp tam giác MNP là:
R = OH =
Do đó, đường tròn ngoại tiếp tam giác đều MNP có tâm O và bán kính
Ta có hình vẽ:
b) Xét tam giác EFG có 52 = 32 + 42 nên EF2 = EG2 + FG2.
Suy ra tam giác EFG vuông tại G.
Gọi I là trung điểm của cạnh huyền EF.
Ta có GI là đường trung tuyến ứng với cạnh huyền của tam giác EFG vuông tại G.
Suy ra IG = IE = IF = = 2,5 (cm).
Do đó, đường tròn tâm I bán kính 5 cm ngoại tiếp tam giác EFG.
Ta có hình vẽ:
Lời giải:
Điểm tập kết cách đều 3 lều tức khoảng cách từ điểm tập kết đều mỗi lều là như nhau tam giác.
Do đó, điểm tập kết là tâm đường tròn ngoại tiếp tam giác có 3 đỉnh là vị trí của ba trại.
2. Đường tròn nội tiếp tam giác
a) Chứng minh rằng IE = IF = ID.
b) Vẽ đường tròn tâm I bán kính IE. Có nhận xét gì về vị trí của đường tròn này với ba cạnh của tam giác ABC?
Lời giải:
a) Xét ΔFBI vuông tại F và ΔDBI vuông tại D có:
(do BI là phân giác góc );
IB chung.
Do đó ΔFBI = ΔDBI (cạnh huyền – góc nhọn).
Suy ra IF = ID (hai cạnh tương ứng) (1).
Xét ΔIDC vuông tại D và ΔIEC vuông tại E có:
(do IC là phân giác góc );
IC chung.
Do đó ΔIDC = ΔIEC (cạnh huyền – góc nhọn).
Suy ra ID = IE (hai cạnh tương ứng) (2).
Từ (1) và (2) suy ra IE = IF = ID.
b) Đường tròn này tiếp xúc với ba cạnh của tam giác tại các điểm F, D, E.
Lời giải:
− Vị trí điểm O để xây trường học cần cách đều 3 điểm A, B, C nên O là tâm đường tròn ngoại tiếp tam giác ABC.
− Vị trí điểm I để lập trạm cứu hộ cần cách đều 3 con đường AB, BC, CA nên I là tâm đường tròn nội tiếp tam giác ABC.
Bài tập
Bài 1 trang 68 Toán 9 Tập 2: Cho tam giác đều ABC có cạnh bằng 6 cm.
a) Nêu các vẽ đường tròn ngoại tiếp tam giác ABC.
b) Nêu các vẽ đường tròn nội tiếp tam giác ABC.
c) Tính bán kính R của đường tròn ngoại tiếp và bán kính r của đường tròn nội tiếp tam giác ABC.
Lời giải:
a) Cách vẽ đường tròn ngoại tiếp tam giác ABC:
− Vẽ đường trung trực a của đoạn thẳng AB.
− Vẽ đường trung trực b của đoạn thẳng AC.
− Gọi O là giao điểm của a và b.
− Vẽ đường tròn tâm O bán kính OA.
Khi đó, đường tròn (O; OA) là đường tròn ngoại tiếp tam giác ABC.
b) Cách vẽ đường tròn nội tiếp tam giác ABC:
− Vẽ đường phân giác AH của góc BAC.
− Vẽ đường phân giác BE của góc ABC.
− Gọi O là giao điểm của AH và BE.
− Vẽ đường tròn tâm O bán kính OH.
Khi đó, đường tròn (O; OH) là đường tròn nội tiếp tam giác ABC.
c) Vì tam giác ABC đều nên O cũng là trọng tâm của ∆ABC.
Theo định lí Pythagore, ta có: AB2 = AH2 + BH2.
Suy ra
Bán kính đường tròn ngoại tiếp tam giác ABC là:
Bán kính đường tròn nội tiếp tam giác ABC là:
Vậy
a) Chứng minh OI vuông góc với BC.
b) Vẽ tiếp tuyến của đường tròn (O) tại B và cắt OI tại M. Chứng minh MC là tiếp tuyến của đường tròn (O).
Lời giải:
a) Ta có (góc nội tiếp chắn nửa đường tròn), suy ra AC ⊥ BC.
Mà AC // OI nên OI ⊥ BC (tính chất từ vuông góc đến song song).
b) Gọi N là giao điểm của BC và OI.
Tam giác OBC có OB = OC = R nên ∆OBC cân tại O.
Ta có ON là đường cao của ∆OBC cân tại O.
Suy ra ON cũng là đường phân giác của .
Do đó
Xét ∆COM và ∆BOM có:
OM là cạnh chung; OB = OC = R.
Do đó ∆COM = ∆BOM (c.g.c).
Suy ra (hai góc tương ứng).
Mà (BM là tiếp tuyến của đường tròn (O) tại B).
Suy ra nên OC ⊥ MC tại C.
Mà C thuộc đường tròn (O), do đó MC là tiếp tuyến của đường tròn (O).
a) Chứng minh 2AD = AB + AC – BC.
b) Tìm các hệ thức tương tự như ở câu a.
Lời giải:
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có: AD = AF, BD = BE, CE = CF.
Suy ra AB + AC – BC = (AD + BD) + (AF + CF) – (BE + CE)
= (AD + AF) + (CF – CE) + (BD – BE) = 2AD.
Vậy 2AD = AB + AC – BC (đpcm).
b) Các hệ thức tương tự như ở câu a là:
2AF = AB + AC – BC;
2BD = 2BE = AB + BC – AC;
2EC = 2FC = AC + BC – AB.
Bài 4 trang 69 Toán 9 Tập 2: Tính diện tích tam giác đều có bán kính đường tròn nội tiếp bằng 1 cm.
Lời giải:
Gọi (O; 1 cm) là đường tròn nội tiếp tam giác đều ABC có cạnh bằng x (cm) (x > 0).
Khi đó O là trọng tâm của ∆ABC.
Vẽ đường trung tuyến AH của ∆ABC.
Ta có r = AH, suy ra AH = 3r = 3 . 1 = 3 (cm).
Theo định lí Pythagore, ta có AB2 = AH2 + HB2.
Suy ra nên hay x2 = 12.
Do đó x = -2 (loại) hoặc x = 2 (thỏa mãn).
Diện tích tam giác ABC là:
.
Vậy diện tích tam giác đều cần tìm là
Lời giải:
Gọi trại có dạng tam giác đều ABC có cạnh bằng 100 m và O là vị trí đặt đèn.
Vì vị trí đặt đèn cách đều ba đỉnh của tam giác nên O là tâm đường tròn ngoại tiếp ∆ABC.
Vẽ hai đường trung tuyến AH và BI, O là giao điểm của AH và BI.
Suy ra O là trọng tâm của ∆ABC.
Áp dụng định lí Pythagore vào tam giác ABH, ta có: AB2 = AH2 + BH2.
Suy ra nên hay x2 = 12.
Do đó R = OA = AH = .50 57,7 (m).
Vậy khoảng cách từ điểm đặt đèn đến ba đỉnh của tam giác khoảng 57,7 m.
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
Bài 3. Đa giác đều và phép quay
Lý thuyết Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
1. Đường tròn ngoại tiếp tam giác
− Đường tròn đi qua ba đỉnh của một tam giác gọi là đường tròn ngoại tiếp tam giác, khi đó tam giác được gọi là tam giác nội tiếp đường tròn.
− Đường tròn ngoại tiếp tam giác có tâm là giao điểm của ba đường trung trực của tam giác và có bán kính bằng khoảng cách từ giao điểm đó đến một đỉnh bất kỳ của tam giác.
− Đường tròn ngoại tiếp tam giác đều cạnh a có tâm là trọng tâm của tam giác và bán kính bằng .
− Đường tròn ngoại tiếp tam giác vuông có tâm là trung điểm của cạnh huyền và bán kính bằng nửa cạnh huyền.
Ví dụ: Cho hình vẽ sau:
Hình nào có đường tròn (O) ngoại tiếp tam giác ABC? Giải thích?
Hướng dẫn giải:
Hình 1, đường tròn (O) là đường tròn ngoại tiếp tam giác ABC vì nó đi qua ba đỉnh A, B, C của tam giác ABC.
2. Đường tròn nội tiếp tam giác
− Đường tròn tiếp xúc với ba cạnh của tam giác gọi là đường tròn nội tiếp tam giác, khi đó tam giác được gọi là tam giác ngoại tiếp đường tròn.
− Đường tròn nội tiếp tam giác có tâm là giao điểm của ba đường phân giác trong và bán kính bằng khoảng cách từ giao điểm đó đến một cạnh bất kì của tam giác.
− Đường tròn nội tiếp tam giác đều có cạnh a có tâm là trọng tâm của tam giác và bán kính bằng .
− Tam giác đều có tâm đường tròn nội tiếp và tâm đường tròn ngoại tiếp trùng nhau.
Ví dụ: Cho ∆ABC vuông tại A, có AB = 6 cm và AC = 8 cm ngoại tiếp đường tròn (I; r). Tính r.
Hướng dẫn giải:
Đường tròn (I; r) tiếp xúc với các cạnh AB, AC, BC theo thứ tự M, N, P.
Ta có:
⦁ (1)
⦁ (2)
⦁ (3)
Cộng (1), (2), (3) vế theo vế, ta được:
Mà (cm2), (cm)
Nên ta có: nên (cm).
Vậy r = 2 cm.