Với giải Bài 6 trang 78 Toán 9 Tập 2 Cánh diều chi tiết trong Bài 2: Tứ giác nội tiếp đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp đường tròn
Bài 6 trang 78 Toán 9 Tập 2: Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I.
a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao?
b) Chứng minh ∆IAB ᔕ ∆IDC và IA . IC = IB . ID.
Lời giải:
Giả sử tứ giác ABCD nội tiếp đường tròn (O).
a) Xét đường tròn (O), hai góc ABD và ACD là hai góc nội tiếp cùng chắn cung AD nên
b) Xét ∆IAB và ∆IDC có:
(đối đỉnh) và (chứng minh trên).
Do đó ∆IAB ᔕ ∆IDC (g.g).
Suy ra (tỉ số các cạnh tương ứng)
Nên IA . IC = IB . ID.
Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Hoạt động 2 trang 76 Toán 9 Tập 2: Trong Hình 22, cho biết ...
Hoạt động 4 trang 77 Toán 9 Tập 2: Cho hình vuông ABCD, AC cắt BD tại điểm O (Hình 20)....
Bài 6 trang 78 Toán 9 Tập 2: Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I....
Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
§1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác
§2. Tứ giác nội tiếp đường tròn