Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I

157

Với giải Bài 6 trang 78 Toán 9 Tập 2 Cánh diều chi tiết trong Bài 2: Tứ giác nội tiếp đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp đường tròn

Bài 6 trang 78 Toán 9 Tập 2: Cho tứ giác nội tiếp ABCD có hai đường chéo AC và BD cắt nhau tại I.

a) Hai góc ABD và ACD có bằng nhau hay không? Vì sao?

b) Chứng minh ∆IAB ᔕ ∆IDC và IA . IC = IB . ID.

Lời giải:

Bài 6 trang 78 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Giả sử tứ giác ABCD nội tiếp đường tròn (O).

a) Xét đường tròn (O), hai góc ABD và ACD là hai góc nội tiếp cùng chắn cung AD nên ABD^=ACD^.

b) Xét ∆IAB và ∆IDC có:

AIB^=DIC^ (đối đỉnh) và ABD^=ACD^ (chứng minh trên).

Do đó ∆IAB ᔕ ∆IDC (g.g).

Suy ra IAID=IBIC (tỉ số các cạnh tương ứng)

Nên IA . IC = IB . ID.

Đánh giá

0

0 đánh giá