Cho hình chữ nhật ABCD, AC cắt BD tại O (Hình 24). Đặt R = OA và vẽ đường tròn (O; R)

57

Với giải Hoạt động 3 trang 76 Toán 9 Tập 2 Cánh diều chi tiết trong Bài 2: Tứ giác nội tiếp đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Tứ giác nội tiếp đường tròn

Hoạt động 3 trang 76 Toán 9 Tập 2: Cho hình chữ nhật ABCD, AC cắt BD tại O (Hình 24). Đặt R = OA và vẽ đường tròn (O; R). Các điểm A, B, C, D có thuộc (O; R) hay không?

Hoạt động 3 trang 76 Toán 9 Tập 2 Cánh diều | Giải Toán 9

Lời giải:

Vì ABCD là hình chữ nhật nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và AC = BD.

Mà O là giao điểm của AC và BD nên O là trung điểm của AC, BD.

Suy ra OA=OC=12AC và OB=OD=12BD.

Do đó OA = OB = OC = OD = R.

Vậy các điểm A, B, C, D đều thuộc đường tròn (O; R).

Đánh giá

0

0 đánh giá