Một người đang ở vị trí A muốn đi đến vị trí B trên bờ hồ như hình bên. Biết rằng người đó chèo thuyền

640

Với giải Khởi động trang 15 Chuyên đề Toán 12 Chân trời sáng tạo chi tiết trong Bài 2: Vận dụng đạo hàm giải bài toán tối ưu giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 12. Mời các bạn đón xem:

Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm giải bài toán tối ưu

Khởi động trang 15 Chuyên đề Toán 12: Một người đang ở vị trí A muốn đi đến vị trí B trên bờ hồ như hình bên. Biết rằng người đó chèo thuyền với tốc độ 50 m/phút và chạy bộ với tốc độ 100 m/phút. Nếu người đó chèo thuyền thẳng từ A đến B thì tốn bao nhiêu thời gian? Có phương án nào tốn ít thời gian hơn không?

Khởi động trang 15 Chuyên đề Toán 12

Lời giải:

Sau bài học này, ta giải quyết được bài toán trên như sau:

Áp dụng định lý Pythagore, ta tính được AB = 500 m.

Do đó, nếu người đó chèo thuyền thẳng từ A đến B thì tốn 50050=10phút.

Ta xem xét phương án sau:

Giả sử người đó chèo thuyền thẳng đến điểm D nằm giữa B và C và cách C một đoạn x (m), rồi chạy bộ thẳng đến B.

Khởi động trang 15 Chuyên đề Toán 12

Ta cần tìm giá trị của x để người đó tốn ít thời gian nhất.

Ta có: AD=x2+3002=x2+90000(m); DB = 400 – x (m) với 0 ≤ x ≤ 400.

Thời gian người đó tiêu tốn là

 t=x2+9000050+400x100=11002x2+90000+400x (phút).

Xét hàm số y=2x2+90000+400x với 0 ≤ x ≤ 400, ta có:

y'=2xx2+900001;

y' = 0 ⇔ 2xx2+900001=02x=x2+90000 ⇔ 4x2 = x2 + 90 000

          ⇔ x2 = 30 000 ⇔ x = 1003 ∈ [0; 400].

Ta có y(0) = 1 000; y1003=3003+400920; y(400) = 1 000.

Vậy min0;400y=y1003920.

Suy ra giá trị nhỏ nhất của t là 920100=9,2(phút), đạt được khi x = 1003 ≈ 173 (m).

Do đó, người đó tốn ít thời gian nhất khi x = 1003 ≈ 173 (m).

Nhận thấy 9,2 phút < 10 phút nên người đó chèo thuyền từ A thẳng đến điểm D nằm giữa B và C và cách C một đoạn xấp xỉ bằng 173 m, rồi chạy bộ thẳng đến B là phương án tốn ít thời gian nhất.

Đánh giá

0

0 đánh giá