Với giải Bài 2 trang 82 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 1: Đường tròn
Bài 2 trang 82 Toán 9 Tập 1: Cho hình chữ nhật ABCD có AD = 18 cm và CD = 12 cm. Chứng minh rằng bốn điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
Lời giải:
⦁ Vì ABCD là hình chữ nhật nên AC = BD. (1)
Gọi O là giao điểm của hai đường chéo AC, BD của hình chữ nhật.
Khi đó, O là trung điểm của AC và BD (tính chất hình chữ nhật) nên (2)
Từ (1) và (2) ta có
Vậy bốn điểm A, B, C, D cùng thuộc một đường tròn đường kính AC, BD.
⦁ Vì ABCD là hình chữ nhật nên
Xét ∆ADC vuông tại D, theo định lí Pythagore, ta có:
AC2 = AD2 + DC2 = 182 + 122 = 468.
Do đó
Vậy bán kính đường tròn đi qua bốn điểm A, B, C, D là
Sơ đồ tư duy Đường tròn
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 2 trang 76 Toán 9 Tập 1: a) Cho đường tròn (O; R)........
Vận dụng 4 trang 81 Toán 9 Tập 1: Dùng compa đo bán kính và vẽ lại các hình trong Hình 19........
Bài 4 trang 82 Toán 9 Tập 1: Cho tứ giác ABCD có ........
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 2. Tiếp tuyến của đường tròn
Bài 3. Góc ở tâm, góc nội tiếp