Với giải Khám phá 3 trang 77 Toán 9 Tập 1 Chân trời sáng tạo chi tiết trong Bài 1: Đường tròn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 1: Đường tròn
Khám phá 3 trang 77 Toán 9 Tập 1: Trên đường tròn (O; R), lấy bốn điểm A, B, M, N sao cho AB đi qua O và MN không đi qua O (Hình 9).
a) Tính độ dài đoạn thẳng AB theo R.
b) So sánh độ dài của MN và OM + ON. Từ đó, so sánh độ dài của MN và AB.
Lời giải:
a) Vì hai điểm A, B cùng nằm trên đường tròn (O; R) nên OA = OB = R.
Mà AB đi qua O hay O nằm giữa A, B nên AB = OA + OB = R + R = 2R.
Vậy AB = 2R.
b) Xét ∆OMN có: OM + ON > MN (bất đẳng thức trong tam giác). (1)
Ta có hai điểm M, N cùng nằm trên đường tròn (O; R) nên OM = ON = R.
Do đó từ (1) ta có R + R > MN hay 2R > MN.
Mà AB = 2R (câu a) nên AB > MN.
Lý Thuyết Đường kính và dây cung của đường tròn
Cho hai điểm C, D cùng thuộc một đường tròn. Đoạn thẳng CD gọi là dây cung hoặc dây. Đường kính AB là một dây đi qua tâm.
Quan hệ giữa dây và đường kính
Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất. |
Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 2 trang 76 Toán 9 Tập 1: a) Cho đường tròn (O; R)........
Vận dụng 4 trang 81 Toán 9 Tập 1: Dùng compa đo bán kính và vẽ lại các hình trong Hình 19........
Bài 4 trang 82 Toán 9 Tập 1: Cho tứ giác ABCD có ........
Xem thêm các bài giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác:
Bài 2. Tiếp tuyến của đường tròn
Bài 3. Góc ở tâm, góc nội tiếp