Với giải Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:
Giải bài tập Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn
Luyện tập 1 trang 89 Toán 9 Tập 1: Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng phần trăm của mét).
Lời giải:
⦁ Bài toán ở phần mở đầu:
Xét ∆ABC vuông tại C, ta có:
BC = AB.sinA, suy ra AB = = 321,62 (m).
⦁ Hình 29b:
Xét ∆ABC vuông tại C, ta có:
AC = AB.cosA, suy ra AB = 25,57 (m).
Lý thuyết Ước lượng khoảng cách
Từ xưa, người ta đã biết cách ứng dụng lượng giác để ước lượng khoảng cách. Bằng cách sử dụng tỉ số lượng giác của góc nhọn, ta có thể ước lượng khoảng cách giữa hai vị trí khi khó đo trực tiếp khoảng cách giữa hai vị trí đó.
Ví dụ 1. Để đo khoảng cách giữa hai vị trí B, C khi không thể đo trực tiếp (Hình a), người ta có thể làm như sau (Hình b):
– Sử dụng giác kế (một loại dụng cụ để đo góc, xem hình dưới), chọn điểm A ở vị trí thích hợp sao cho góc ACB là góc vuông. Đo khoảng cách AC;
– Sử dụng giác kế để đo góc BAC;
– Từ đó, tính khoảng cách BC.
a) Theo cách làm trên, nêu công thức tính khoảng cách giữa hai vị trí B, C.
b) Tính khoảng cách giữa hai vị trí B, C, biết AC = 5 m và (làm tròn kết quả đến hàng phần trăm của mét).
Hướng dẫn giải
a) Vì tam giác ABC vuông tại C nên BC = AC.tanA.
b) Ta có AC = 5 m và .
Suy ra BC = 5.tan72° ≈ 15,39 (m)
Vậy khoảng cách giữa hai vị trí B, C bằng khoảng 15,39 m.
Ví dụ 2. Tia nắng mặt trời tạo với phương thẳng đứng một góc 56° và tháp cao 58 m (hình vẽ). Tính chiều dài của bóng tháp trên mặt đất (làm tròn kết quả đến hàng đơn vị).
Hướng dẫn giải
Tam giác OAB vuông tại A nên:
(m).
Vậy chiều dài của bóng tháp bằng khoảng 86 m.
Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
Khởi động trang 88 Toán 9 Tập 1: Hình 28 minh họa một máy bay cất cánh từ vị trí A trên đường băng của sân bay và bay theo đường thẳng AB tạo với phương nằm ngang AC một góc là 20°. Sau 5 giây, máy bay ở độ cao BC = 110 m.......
Luyện tập 1 trang 89 Toán 9 Tập 1: Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng phần trăm của mét).......
Luyện tập 2 trang 90 Toán 9 Tập 1: Mặt cắt đứng của khung thép có dạng tam giác cân ABC với AB = 4 m (Hình 33). Tính độ dài đoạn thẳng BC (làm tròn kết quả đến hàng phần mười của mét).......
Bài 1 trang 90 Toán 9 Tập 1: Hình 35 mô tả ba vị trí A, B, C là ba đỉnh của một tam giác vuông và không đo được trực tiếp các khoảng cách từ C đến A và từ C đến B. Biết AB = 50 m, Tính các khoảng cách CA và BC (làm tròn kết quả đến hàng đơn vị của mét).......
Bài 2 trang 91 Toán 9 Tập 1: Để ước lượng chiều cao của một cây trong sân trường, bạn Hoàng đứng ở sân trường (theo phương thẳng đứng), mắt bạn Hoàng đặt tại vị trí C cách mặt đất một khoảng CB = DH = 1,64 m và cách cây một khoảng CD = BH = 6 m. Tính chiều cao AH của cây (làm tròn kết quả đến hàng phần trăm của mét), biết góc nhìn ACD bằng 38° minh hoạ ở Hình 36.......
Bài 3 trang 91 Toán 9 Tập 1: Người ta cần ước lượng khoảng cách từ vị trí O đến khu đất có dạng hình thang MNPQ nhưng không thể đo được trực tiếp, khoảng cách đó được tính bằng khoảng cách từ O đến đường thẳng MN. Người ta chọn vị trí A ở đáy MN và đo được OA = 18 m, (Hình 37). Tính khoảng cách từ vị trí O đến khu đất (làm tròn kết quả đến hàng phần mười của mét)......
Bài 4 trang 91 Toán 9 Tập 1: Một mảnh gỗ có dạng hình chữ nhật ABCD với đường chéo AC = 8 dm. Do bảo quản không tốt nên mảnh gỗ bị hỏng phía hai đỉnh B và D. Biết (Hình 38). Người ta cần biết độ dài AB và AD để khôi phục lại mảnh gỗ ban đầu. Độ dài AB, AD bằng bao nhiêu decimét (làm tròn kết quả đến hàng phần mười)?.....
Bài 5 trang 91 Toán 9 Tập 1: Trên mặt biển, khi khoảng cách AB từ ca nô đến chân tháp hải đăng là 250 m, một người đứng trên tháp hải đăng đó, đặt mắt tại vị trí C và nhìn về phía ca nô theo phương CA tạo với phương nằm ngang Cx một góc là (Hình 39). Tính chiều cao của tháp hải đăng (làm tròn kết quả đến hàng phần mười của mét), biết AB // Cx và độ cao từ tầm mắt của người đó đến đỉnh tháp hải đăng là 3,2 m......
Xem thêm các bài giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:
§2. Một số hệ thức về cạnh và góc trong tam giác vuông
§3. Ứng dụng của tỉ số lượng giác của góc nhọn
Bài tập cuối chương 4
§1. Đường tròn. Vị trí tương đối của hai đường tròn
§2. Vị trí tương đối của đường thẳng và đường tròn
§3. Tiếp tuyến của đường tròn