Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng

128

Với giải Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 3: Ứng dụng của tỉ số lượng giác của góc nhọn

Luyện tập 1 trang 89 Toán 9 Tập 1: Hãy giải bài toán ở phần mở đầu và tính AB trong Hình 29b (làm tròn kết quả đến hàng phần trăm của mét).

Luyện tập 1 trang 89 Toán 9 Tập 1 Cánh diều | Giải Toán 9

Lời giải:

⦁ Bài toán ở phần mở đầu:

Xét ∆ABC vuông tại C, ta có:

BC = AB.sinA, suy ra AB = BCsinA = 110sin20° 321,62 (m).

⦁ Hình 29b:

Xét ∆ABC vuông tại C, ta có:

AC = AB.cosA, suy ra AB = ACcosA=4cos81°25,57 (m).

Lý thuyết Ước lượng khoảng cách

Từ xưa, người ta đã biết cách ứng dụng lượng giác để ước lượng khoảng cách. Bằng cách sử dụng tỉ số lượng giác của góc nhọn, ta có thể ước lượng khoảng cách giữa hai vị trí khi khó đo trực tiếp khoảng cách giữa hai vị trí đó.

Ví dụ 1. Để đo khoảng cách giữa hai vị trí B, C khi không thể đo trực tiếp (Hình a), người ta có thể làm như sau (Hình b):

Ứng dụng của tỉ số lượng giác của góc nhọn (Lý thuyết Toán lớp 9) | Cánh diều

– Sử dụng giác kế (một loại dụng cụ để đo góc, xem hình dưới), chọn điểm A ở vị trí thích hợp sao cho góc ACB là góc vuông. Đo khoảng cách AC;

Ứng dụng của tỉ số lượng giác của góc nhọn (Lý thuyết Toán lớp 9) | Cánh diều

– Sử dụng giác kế để đo góc BAC;

– Từ đó, tính khoảng cách BC.

a) Theo cách làm trên, nêu công thức tính khoảng cách giữa hai vị trí B, C.

b) Tính khoảng cách giữa hai vị trí B, C, biết AC = 5 m và BAC^=72° (làm tròn kết quả đến hàng phần trăm của mét).

Hướng dẫn giải

a) Vì tam giác ABC vuông tại C nên BC = AC.tanA.

b) Ta có AC = 5 m và BAC^=72°.

Suy ra BC = 5.tan72° ≈ 15,39 (m)

Vậy khoảng cách giữa hai vị trí B, C bằng khoảng 15,39 m.

Ví dụ 2. Tia nắng mặt trời tạo với phương thẳng đứng một góc 56° và tháp cao 58 m (hình vẽ). Tính chiều dài của bóng tháp trên mặt đất (làm tròn kết quả đến hàng đơn vị).

Ứng dụng của tỉ số lượng giác của góc nhọn (Lý thuyết Toán lớp 9) | Cánh diều

Hướng dẫn giải

Tam giác OAB vuông tại A nên:

OA=ABtanOBA^=58tan56°86 (m).

Vậy chiều dài của bóng tháp bằng khoảng 86 m.

Đánh giá

0

0 đánh giá