Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt

282

Với giải Hoạt động 3 trang 16 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 2: Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 2: Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn

Hoạt động 3 trang 16 Toán 9 Tập 1: Hai bạn Dũng, Huy vào siêu thị mua vở và bút bi để ủng hộ các bạn học sinh vùng lũ lụt. Bạn Dũng mua 5 quyển vở và 3 chiếc bút bi với tổng số tiền phải trả là 39 000 đồng. Bạn Huy mua 6 quyển vở và 2 chiếc bút bi với tổng số tiền phải trả là 42 000 đồng. Giả sử giá của mỗi quyển vở là x đồng (x>0), giá của mỗi chiếc bút bi là y đồng (y>0).

a. Viết hai phương trình bậc nhất hai ẩn x,y lần lượt biểu thị tổng số tiền phải trả của bạn Dũng, bạn Huy.

b. Cặp số (x;y)=(6000;3000) có phải là nghiệm của từng phương trình bậc nhất đó hay không? Vì sao?

Lời giải:

a.

+ Bạn Dũng phải trả số tiền cho 5 quyển vở là: 5x (đồng);

+ Bạn Dũng phải trả số tiền cho 3 chiếc bút bi là: 3y (đồng);

Suy ra Số tiền bạn Dũng phải trả là: 5x+y=39000.

+ Bạn Huy phải trả số tiền cho 6 quyển vở là: 6x (đồng);

+ Bạn Huy phải trả số tiền cho 2 chiếc bút bi là: 2y (đồng);

Suy ra Số tiền bạn Huy phải trả là: 6x+2y=42000.

b.

+ Thay cặp số (x;y)=(6000;3000) vào phương trình 5x+y=39000 ta được:

5.6000+3.3000=3900030000+9000=39000

39000=39000 (luôn đúng).

Vậy cặp số (x;y)=(6000;3000) là nghiệm của phương trình 5x+y=39000.

+ Thay cặp số (x;y)=(6000;3000) vào phương trình 6x+2y=42000 ta được:

6.6000+2.3000=4200036000+6000=42000

42000=42000 (luôn đúng).

Vậy cặp số (x;y)=(6000;3000) là nghiệm của phương trình 6x+2y=42000.

Lý Thuyết Hệ hai phương trình bậc nhất hai ẩn

Khái niệm hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn x, y có dạng:

{ax+by=cax+by=c(I),

ở đó mỗi phương trình ax+by=c và ax+by=c đều là phương trình bậc nhất hai ẩn.

Ví dụ: Hệ phương trình {2xy=0x+y=3{3x=1xy=3{4xy=33y=6 là các hệ phương trình bậc nhất hai ẩn.

Nghiệm của hệ hai phương trình bậc nhất hai ẩn

Nếu (x0;y0) là nghiệm của từng phương trình trong hệ (I) thì cặp số (x0;y0) được gọi là một nghiệm của hệ (I).

Giải hệ phương trình là tìm tất cả các nghiệm của hệ phương trình đó.

Ví dụ: Cặp số (1; 2) là một nghiệm của hệ phương trình {2xy=0x+y=3, vì:

2xy=2.12=0 nên (1; 2) là nghiệm của phương trình thứ nhất.

x+y=1+2=3 nên (1; 2) là nghiệm của phương trình thứ hai.

Đánh giá

0

0 đánh giá