Cho phương trình: (2x + 1)/2x = 1 - 2/(x - 3) (2). Hãy giải phương trình (2)

116

Với giải Hoạt động 3 trang 8 Toán 9 Tập 1 Cánh diều chi tiết trong Bài 1: Phương trình quy về phương trình bậc nhất một ẩn giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài 1: Phương trình quy về phương trình bậc nhất một ẩn

Hoạt động 3 trang 8 Toán 9 Tập 1: Cho phương trình: 2x+12x=12x3(2)

Hãy giải phương trình (2) theo các bước sau:

a. Tìm điều kiện xác định của phương trình (2).

b. Tìm mẫu thức chung, quy đồng mẫu thức các phân thức ở hai vế của phương trình (2) và khử mẫu.

c. Giải phương trình vừa tìm được.

d. Kiểm tra điều kiện xác định của phương trình (2) đối với các giá trị của ẩn vừa tìm được rồi kết luận.

Lời giải:

a. Điều kiện xác định của phương trình 2x+12x=12x3 là 2x0 và x30 hay x0 và x3.

b.

+ Mẫu thức chung của phương trình là: 2x(x3).

+ Quy đồng mẫu thức: (2x+1)(x3)2x(x3)=2x(x3)2x(x3)4x2x(x3).

+ Khử mẫu: (2x+1)(x3)=2x(x3)4x.

c. Giải phương trình: (2x+1)(x3)=2x(x3)4x.

2x26x+x3=2x26x4x2x26x+x32x2+6x+4x=05x3=0

x=35.

d. Ta thấy x=35 thỏa mãn điều kiện xác định của phương trình.

Lý Thuyết Phương trình chứa ẩn ở mẫu

Điều kiện xác định của phương trình chứa ẩn ở mẫu

Trong phương trình chứa ẩn ở mẫu, điều kiện của ẩn để tất cả các mẫu thức trong phương trình đều khác 0 được gọi là điều kiện xác định của phương trình.

Ví dụ:

- Phương trình 5x+2x1=0 có điều kiện xác định là x10 hay x1.

- Phương trình 1x+1=1+1x2 có điều kiện xác định là x+10 và x20 hay x1 và x2.

Các bước giải phương trình chứa ẩn ở mẫu

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu thức hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4. Kết luận nghiệm: Trong các giá trị tìm được ở Bước 3, các giá trị thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Ví dụ: Giải phương trình 2x+1+1x2=3(x+1)(x2)

Lời giải:

Điều kiện xác định x1 và x2.

2x+1+1x2=3(x+1)(x2)

2(x2)+(x+1)(x+1)(x2)=3(x+1)(x2)

2(x2)+(x+1)=3.

2(x2)+(x+1)=32x4+x+1=33x3=33x=6x=2

Ta thấy x=2 không thỏa mãn điều kiện xác định của phương trình.

Vậy phương trình 2x+1+1x2=3(x+1)(x2) vô nghiệm.

Đánh giá

0

0 đánh giá