Tìm số tự nhiên N có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số

718

Với giải Bài 1.25 trang 25 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài tập cuối chương 1 trang 24 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài tập cuối chương 1 trang 24

Bài 1.25 trang 25 Toán 9 Tập 1Tìm số tự nhiên N có hai chữ số, biết rằng nếu viết thêm chữ số 3 vào giữa hai chữ số của số N thì được một số lớn hơn số 2N là 585 đơn vị, và nếu viết hai chữ số của số N theo thứ tự ngược lại thì được một số nhỏ hơn số N là 18 đơn vị.

Lời giải:

Số N cần tìm có dạng ab¯(0<a9;0b9;a,bN).

Viết thêm chữ số 3 vào giữa hai chữ số của số N thì ta được số mới có dạng a3b¯

Thì được một số lớn hơn số 2N là 585 đơn vị nên ta có phương trình a3b¯2.ab¯=585 suy ra 100a+30+b2.(10a+b)=585 hay 80ab=555.

Viết hai chữ số của số N theo thứ tự ngược lại thì ta được số có dạng ba¯

Thì được một số nhỏ hơn số N là 18 đơn vị nên ta có phương trình ab¯ba¯=18 suy ra 10a+b(10b+a)=18 hay ab=2.

Từ đó ta có hệ phương trình {80ab=555ab=2

Trừ từng vế của hai phương trình ta có (80ab)(ab)=5552 hay 79a=553 nên a=7(t/m). Với a=7 thay vào phương trình thứ hai ta được b=5(t/m).

Vậy N = 75.

Đánh giá

0

0 đánh giá