Giải các hệ phương trình: a) 2x + 5y = 10 và 2/5x + y = 1

678

Với giải Bài 1.23 trang 24 Toán 9 Tập 1 Kết nối tri thức chi tiết trong Bài tập cuối chương 1 trang 24 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 9. Mời các bạn đón xem:

Giải bài tập Toán 9 Bài tập cuối chương 1 trang 24

Bài 1.23 trang 24 Toán 9 Tập 1Giải các hệ phương trình:
a) {2x+5y=1025x+y=1;
b) {0,2x+0,1y=0,33x+y=5;
c) {32xy=126x4y=2.

Lời giải:

a) {2x+5y=1025x+y=1;

Nhân cả hai vế của phương trình thứ 2 ta được 2x+5y=5 từ đó ta có hệ phương trình {2x+5y=102x+5y=5

Trừ từng vế của hai phương trình ta được (2x+5y)(2x+5y)=105 hay 0x+0y=5 (vô lí). Phương trình này không có giá trị nào của x và y thỏa mãn nên hệ phương trình đã cho vô nghiệm.

b) {0,2x+0,1y=0,33x+y=5;

Nhân cả hai vế của phương trình thứ nhất với 10 ta được 2x+y=3 từ đó ta có hệ phương trình {2x+y=33x+y=5

Trừ từng vế của hai phương trình ta có (2x+y)(3x+y)=35 hay x=2 nên x=2.

Thay x=2 vào phương trình thứ nhất ta được 2.2+y=3 hay y=1.

Vậy hệ phương trình đã cho có nghiệm (2;1).

c) {32xy=126x4y=2.

Nhân cả hai vế của phương trình thứ nhất với 4 ta được 6x4y=2 từ đó ta có hệ phương trình {6x4y=26x4y=2

Trừ từng vế của hai phương trình ta được (6x4y)(6x4y)=22 hay 0x+0y=0. Phương trình này có vô số nghiệm x,yR tùy ý thỏa mãn.

Với 32xy=12 nên y=32x12 với xR tùy ý. Vậy nghiệm của hệ phương trình là (x;32x12) với xR tùy ý.

Đánh giá

0

0 đánh giá