Với tóm tắt lý thuyết Toán lớp 9 Chương 1: Phương trình và hệ hai phương trình bậc nhất hai ẩn sách Kết nối tri thức hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.
Lý thuyết Toán 9 Chương 1: Phương trình và hệ hai phương trình bậc nhất hai ẩn
A. Lý thuyết Toán 9 Chương 1: Phương trình và hệ hai phương trình bậc nhất hai ẩn
1. Phương trình bậc nhất hai ẩn
Khái niệm phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn x và y là hệ thức dạng ax + by = c (1), trong đó a, b và c là các số đã biết (a ≠ 0 hoặc b ≠ 0).
Khái niệm nghiệm của phương trình bậc nhất hai ẩn: Nếu tại x = x0 và y = y0 ta có ax0 + by0 = c là một khẳng định đúng thì cặp số (x0; y0) được gọi là một nghiệm của phương trình (1).
Chú ý: Một phương trình bậc nhất hai ẩn đều có vô số nghiệm.
Nhận xét: Trong mặt phẳng tọa độ, tập hợp các điểm có tọa độ (x; y) thỏa mãn phương trình bậc nhất hai ẩn ax + by = c là một đường thẳng. Đường thẳng đó gọi là đường thẳng ax + by = c.
2. Hệ hai phương trình bậc nhất hai ẩn
Khái niệm hệ hai phương trình bậc nhất hai ẩn: Một cặp gồm hai phương trình bậc nhất hai ẩn ax + by = c và a’x + b’y = c’ được gọi là một hệ hai phương trình bậc nhất hai ẩn. Ta thường viết hệ phương trình đó dưới dạng:
Khái niệm nghiệm của hệ hai phương trình bậc nhất hai ẩn: Mỗi cặp số (x0; y0) được gọi là một nghiệm của hệ (*) nếu nó đồng thời là nghiệm của cả hai phương trình của hệ (*).
Lưu ý: Mỗi nghiệm của hệ (*) chính là một nghiệm chung của hai phương trình của hệ (*).
Chú ý: Cặp số (x0; y0) là nghiệm của hệ phương trình (*) có nghĩa là điểm có tọa độ (x0; y0) vừa thuộc đường thẳng ax + by = c, vừa thuộc đường thẳng a’x + b’y = c’. Vậy điểm có tọa độ (x0; y0) là giao điểm của hai đường thẳng ax + by = c và a’x + b’y = c’.
3. Phương pháp thế
Cách giải hệ phương trình bằng phương pháp thế:
Bước 1. Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình chỉ còn chứa một ẩn.
Bước 2. Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình đã cho.
4. Phương pháp cộng đại số
Cách giải hệ phương trình bằng phương pháp cộng đại số:
Để giải một hệ hai phương trình bậc nhất hai ẩn có hệ số của cùng một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau, ta có thể làm như sau:
Bước 1. Cộng hay trừ từng vế của hai phương trình trong hệ để được phương trình chỉ còn chứa một ẩn.
Bước 2. Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ phương trình đã cho.
Chú ý: Trường hợp trong hệ phương trình đã cho không có hai hệ số của cùng một ẩn bằng nhau hay đối nhau, ta có thể đưa về trường hợp đã xét bằng cách nhân hai về của mỗi phương trình với một số thích hợp (khác 0).
5. Sử dụng máy tính cầm tay để tìm nghiệm của hệ hai phương trình bậc nhất hai ẩn
Cách tìm nghiệm của hệ hai phương trình bậc nhất hai ẩn bằng máy tính cầm tay
Muốn tìm nghiệm của hệ hai phương trình bậc nhất hai ẩn bằng máy tính cầm tay (MTCT), chúng ta cần sử dụng loại máy có chức năng này (thường có phím MODE). Trước hết ta phải viết hệ phương trình cần tìm nghiệm dưới dạng:
Chẳng hạn, để tìm nghiệm của hệ ta viết nó dưới dạng
Khi đó, ta có a1 = 2, b1 = 3, c1 = 4; a2 = 5, b2 = 6 và c2 = 7. Lần lượt thực hiện các bước sau (với máy tính thích hợp):
Bước 1. Vào chức năng giải hệ hai phương trình bậc nhất hai ẩn bằng cách bấm các phím (xem màn hình sau bước 1, con trỏ ở vị trí a1).
Bước 2. Nhập các số a1 = 2, b1 = 3, c1 = 4; a2 = 5, b2 = 6 và c2 = 7 bằng cách bấm: (xem màn hình sau bước 2).
Bước 3. Đọc kết quả: Sau khi kết thúc bước 2, bấm màn hình cho x = –1; bấm tiếp phím màn hình cho y = 2 (xem màn hình sau bước 3). Ta hiểu nghiệm của hệ phương trình là (–1; 2).
Màn hình sau bước 1 |
Màn hình sau bước 2 |
Màn hình sau bước 3 |
Chú ý:
– Muốn xóa số vừa nhập thì bấm phím muốn thay đổi số đã nhập ở một vị trí nào đó thì di chuyển con trỏ đến vị trí đó rồi nhập số mới.
– Bấm phím hay để chuyển đổi hiển thị các giá trị của x và y trong kết quả.
– Nếu máy báo “Infinite Sol” thì hệ phương trình đã cho có vô số nghiệm. Nếu máy báo “No-Solution” thì hệ phương trình đã cho vô nghiệm.
6. Giải bài toán bằng cách lập hệ phương trình
Các bước giải một bài toán bằng cách lập hệ phương trình:
Bước 1. Lập hệ phương trình:
– Chọn ẩn số (thường chọn hai ẩn số) và đặt điều kiện thích hợp cho các ẩn số;
– Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết;
Bước 2. Giải hệ phương trình.
Bước 3. Trả lời: Kiểm tra xem trong các nghiệm tìm được của hệ phương trình, nghiệm nào thỏa mãn, nghiệm nào không thỏa mãn điều kiện của ẩn, rồi kết luận.
B. Bài tập Toán 9 Chương 1: Phương trình và hệ hai phương trình bậc nhất hai ẩn
I. Bài tập trắc nghiệm
Bài 1. Cặp số nào sau đây là nghiệm của hệ phương trình bậc nhất hai ẩn
A. (–1; 3).
B. (2; 1).
C. (7; 5).
D. (5; –1).
Hướng dẫn giải
Đáp án đúng là: C
⦁ Khi x = –1 và y = 3 thì:
4.(–1) – 5.3 = –19 ≠ 3 nên (–1; 3) không là nghiệm của phương trình thứ nhất;
3.(–1) – 3 = –6 ≠ 16 nên (–1; 3) không là nghiệm của phương trình thứ hai.
Do đó cặp số (–1; 3) không là nghiệm chung của hai phương trình trong hệ.
Vậy cặp số (–1; 3) không là nghiệm của hệ phương trình đã cho.
⦁ Khi x = 2 và y = 1 thì:
4.2 – 5.1 = 3 nên (2; 1) là nghiệm của phương trình thứ nhất;
3.2 – 1 = 5 ≠ 16 nên (2; 1) không là nghiệm của phương trình thứ hai.
Do đó cặp số (2; 1) không là nghiệm chung của hai phương trình trong hệ.
Vậy cặp số (2; 1) không là nghiệm của hệ phương trình đã cho.
⦁ Khi x = 7 và y = 5 thì:
4.7 – 5.5 = 3 nên (7; 5) là nghiệm của phương trình thứ nhất;
3.7 – 5 = 16 nên (7; 5) là nghiệm của phương trình thứ hai.
Suy ra cặp số (7; 5) là nghiệm chung của hai phương trình trong hệ.
Vậy cặp số (7; 5) là nghiệm của hệ phương trình đã cho.
⦁ Khi x = 5 và y = –1 thì:
4.5 – 5.(–1) = 25 ≠ 3 nên (5; –1) không là nghiệm của phương trình thứ nhất;
3.5 – (–1) = 16 nên (5; –1) là nghiệm của phương trình thứ hai.
Do đó cặp số (5; –1) không là nghiệm chung của hai phương trình trong hệ.
Vậy cặp số (5; –1) không là nghiệm của hệ phương trình đã cho.
Ta chọn phương án C.
Bài 2. Khẳng định nào sau đây là đúng?
Hệ phương trình
A. có một nghiệm.
B. vô nghiệm.
C. có vô số nghiệm.
D. có hai nghiệm.
Hướng dẫn giải
Đáp án đúng là: B
Xét hệ phương trình
Từ phương trình (2), ta có: y = –6 – 2x. (*)
Thế vào phương trình (1) ta được: 0,6x + 0,3.(–6 – 2x) = 1,8. (**)
Giải phương trình (**):
0,6x + 0,3.(–6 – 2x) = 1,8
0,6x – 1,8 – 0,6x = 1,8
0x = 3,6.
Do đó phương trình (**) vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Bài 3. Khẳng định nào sau đây là đúng?
Hệ phương trình
A. có nghiệm là (0; –0,5).
B. có nghiệm là (1; 0).
C. có nghiệm là (–3; –8).
D. vô nghiệm.
Hướng dẫn giải
Đáp án đúng là: C
Xét hệ phương trình
Từ phương trình (2), ta có: y = 2x – 2. (*)
Thế vào phương trình (1) ta được: 1,5x – 0,6.(2x – 2) = 0,3. (**)
Giải phương trình (**):
1,5x – 0,6.(2x – 2) = 0,3
1,5x – 1,2x + 1,2 = 0,3
0,3x = –0,9
x = –3.
Thay x = –3 vào phương trình (*), ta có:
y = 2.(–3) – 2 = –8.
Vậy hệ phương trình đã cho có nghiệm duy nhất (–3; –8).
Bài 4. Phương trình nào sau đât không phải là phương trình bậc nhất hai ẩn?
A. x – 5y = –3.
B. –2x + 0y = 0.
C. 0x – 2y = 1.
D. 0x + 0y = 1.
Hướng dẫn giải
Đáp án đúng là: D
Phương trình bậc nhất hai ẩn có dạng ax + by = c với a ≠ 0 hoặc b ≠ 0.
Vậy phương trình 0x + 0y = 1 không phải là phương trình bậc nhất hai ẩn.
Bài 5. Cặp số nào sau đây là nghiệm của phương trình 5x + 4y = 8?
A. (–2; 1).
B. (0; 2).
C. (–1; 0).
D. (4; 3).
Hướng dẫn giải
Đáp án đúng là: B
Xét phương trình 5x + 4y = 8:
⦁ Thay x = –2 và y = 1, ta có: 5.(–2) + 4.1 = –2 ≠ 8.
⦁ Thay x = 0 và y = 2, ta có: 5.0 + 4.2 = 8.
⦁ Thay x = –1 và y = 0, ta có: 5.(–1) + 4.0 = –5 ≠ 8.
⦁ Thay x = 4 và y = 3, ta có: 5.4 + 4.3 = 32 ≠ 8.
Vậy (0; 2) là nghiệm của phương trình đã cho.
Bài 6. Đường thẳng biểu diễn tất cả các nghiệm của phương trình x – 3y = 2 là đường thẳng
A. song song với trục tung.
B. song song với trục hoành.
C. đi qua gốc tọa độ.
D. đi qua điểm A(–1; –1).
Hướng dẫn giải
Đáp án đúng là: D
Thay x = –1 và y = –1 vào phương trình ta có:
–1 – 3.(–1) = 2.
Vậy đường thẳng x – 3y = 2 đi qua điểm A(–1; –1).
II. Bài tập tự luận
Bài 1. Viết nghiệm và biểu diễn hình học tất cả các nghiệm của mỗi phương trình bậc nhất hai ẩn sau:
a) x + 0y = 1.
b) 0x + y = –1.
c) x – 2y = 3.
Hướng dẫn giải:
a) Xét phương trình x + 0y = 1. (1)
Ta viết gọn (1) thành x = 1. Phương trình này có nghiệm là (1; y) với y ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục tung và cắt trục hoành tại điểm (1; 0). Ta gọi đó là đường thẳng d1: x = 1 (hình a).
b) Xét phương trình 0x + y = –1. (2)
Ta viết gọn (2) thành y = –1. Phương trình này có nghiệm là (x; –1) với x ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng song song với trục hoành và cắt trục tung tại điểm (0; –1). Ta gọi đó là đường thẳng d2: y = –1 (hình b).
c) Xét phương trình x – 2y = 3. (3)
Ta viết (3) dưới dạng Mỗi cặp số với x ∈ ℝ tùy ý, là một nghiệm của (3). Khi đó ta nói phương trình (3) có nghiệm tổng quát là với x ∈ ℝ tùy ý.
Mỗi nghiệm này là tọa độ của một điểm thuộc đường thẳng Ta cũng gọi đường thẳng này là đường thẳng d3: x – 2y = 3.
Để vẽ đường thẳng đó, ta chỉ cần xác định hai điểm tùy ý của nó, chẳng hạn và (3; 0), rồi vẽ đường thẳng đi qua hai điểm đó (hình c).
Bài 2. Xét trò ném đồng xu vào trong vòng tròn như hình vẽ dưới đây:
– Lượt chơi thứ nhất (ném đồng xu 2 lần): một đồng xu rơi vào phần trong (hình tròn màu trắng), một đồng xu rơi vào phần ngoài (hình vành khăn màu đen); tổng số điểm đạt được là 17 (điểm).
– Lượt chơi thứ hai (ném đồng xu 5 lần): hai đồng xu rơi vào phần trong, ba đồng xu rơi vào phần ngoài; tổng số điểm đạt được là 41 (điểm).
Gọi x, y lần lượt là số điểm ấn định cho phần trong và phần ngoài.
a) Viết hệ hai phương trình bậc nhất hai ẩn x, y biểu thị mối quan hệ giữa các đại lượng.
b) Cặp số (10; 7) có phải là nghiệm của hệ phương trình ở câu a hay không? Vì sao?
Hướng dẫn giải
a) – Lượt chơi thứ nhất có một đồng xu rơi vào phần trong và một đồng xu rơi vào phần ngoài, đạt được 17 điểm nên ta có phương trình: x + y = 17.
– Lượt chơi thứ hai có hai đồng xu rơi vào phần trong, ba đồng xu rơi vào phần ngoài, đạt được 41 điểm nên ta có phương trình: 2x + 3y = 41.
Vậy hệ hai phương trình bậc nhất hai ẩn x, y biểu thị mối quan hệ giữa các đại lượng là:
b) Thay x = 10 và y = 7 vào mỗi phương trình trong hệ ở câu a, ta có:
10 + 7 = 17;
2.10 + 3.7 = 41.
Suy ra cặp số (10; 7) là nghiệm của từng phương trình trong hệ.
Vậy cặp số (10; 7) là nghiệm của hệ phương trình ở câu a.
Bài 3. Giải các hệ phương trình sau bằng phương pháp thế:
a)
b)
c)
Hướng dẫn giải
a)
Từ phương trình (1), ta có: x = 5 – y. (*)
Thế vào phương trình (2) ta được: 3.(5 – y) – 2y = 5. (**)
Giải phương trình (**):
3.(5 – y) – 2y = 5
15 – 3y – 2y = 5
15 – 5y = 5
–5y = –10
y = 2.
Thay y = 2 vào phương trình (*), ta có:
x = 5 – 2 = 3.
Vậy hệ phương trình đã cho có nghiệm duy nhất (3; 2).
b)
Từ phương trình (3), ta có: x = 14 – 7y. (***)
Thế vào phương trình (4) ta được: 2.(14 – 7y) + 14y = 28. (****)
Giải phương trình (****):
2.(14 – 7y) + 14y = 28
28 – 14y + 14y = 28
0y = 0.
Do đó phương trình (****) có vô số nghiệm.
Vậy hệ phương trình đã cho có vô số nghiệm.
c)
Từ phương trình (5), ta có: suy ra
Thế vào phương trình (6) ta được:
Giải phương trình (8):
3x – 3x + 16 = 11
0x = –5.
Do đó phương trình (8) vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
Bài 4. Giải các hệ phương trình sau bằng phương pháp cộng đại số:
a)
b)
c)
Hướng dẫn giải:
a)
Nhân hai vế của phương trình (1a) với 4, ta được hệ phương trình sau:
Trừ từng vế hai phương trình (3a) và (4a), ta nhận được phương trình:
0x + 0y = 12.
Phương trình trên vô nghiệm.
Vậy hệ phương trình đã cho vô nghiệm.
b)
Nhân hai vế của phương trình (2b) với 3, ta được hệ phương trình sau:
Cộng từng vế hai phương trình (3b) và (4b), ta nhận được phương trình:
17x = –34, tức là x = –2.
Thay x = –2 vào phương trình (2b), ta có: 5.(–2) – 2y = –9. (5b)
Giải phương trình (5b):
5.(–2) – 2y = –9
–10 – 2y = –9
–2y = 1
Vậy hệ phương trình đã cho có nghiệm duy nhất
c)
Nhân hai vế của phương trình (1c) với 2, ta được hệ phương trình sau:
Cộng từng vế hai phương trình (3c) và (4c), ta nhận được phương trình:
0x + 0y = 0.
Phương trình trên vô số nghiệm.
Vậy hệ phương trình đã cho có vô số nghiệm.
Bài 5. Nhân dịp ngày Giỗ Tổ Hùng Vương, một siêu thị điện máy đã giảm giá nhiều mặt hàng để kích cầu mua sắm. Giá niêm yết của một chiếc tủ lạnh và một chiếc máy giặt có tổng số tiền là 25,4 triệu đồng. Tuy nhiên, trong dịp này tủ lạnh giảm 40% giá niêm yết và máy giặt giảm 25% giá niêm yết. Vì thế, cô Ngọc đã mua hai mặt hàng trên với tổng số tiền là 16,77 triệu đồng. Hỏi giá niêm yết của mỗi mặt hàng trên là bao nhiêu?
Hướng dẫn giải
⦁ Gọi giá niêm yết của một chiếc tủ lạnh và một chiếc máy giặt lần lượt là x, y (triệu đồng) (0 < x < 25,4; 0 < y < 25,4).
Theo bài, giá niêm yết của một chiếc tủ lạnh và một chiếc máy giặt có tổng số tiền là 25,4 triệu đồng nên ta có: x + y = 25,4.
Do tủ lạnh được giảm 40% giá niêm yết nên giá của chiếc tủ lạnh sau giảm giá là x.(100% – 40%) = x.60% = 0,6x (triệu đồng).
Do máy giặt được giảm 25% giá niêm yết nên giá của chiếc máy lạnh sau giảm giá là y.(100% – 25%) = y.75% = 0,75y (triệu đồng).
Theo bài, cô Ngọc đã mua hai mặt hàng trên với tổng số tiền là 16,77 triệu đồng nên ta có phương trình: 0,6x + 0,75y = 16,77 hay 60x + 75y = 1 677.
Ta có hệ phương trình:
⦁ Giải hệ phương trình
Nhân hai vế của phương trình thứ nhất với 75, ta nhận được hệ phương trình sau:
Trừ hai vế của phương trình thứ nhất cho phương trình thứ hai của hệ phương trình trên, ta có: 15x = 228. (1)
Giải phương trình (1):
15x = 228
x = 15,2.
Thay x = 15,2 vào phương trình x + y = 25,4, ta được: 15,2 + y = 25,4. (2)
Giải phương trình (2):
15,2 + y = 25,4
y = 10,2.
⦁ Các giá trị tìm được của x và y thỏa mãn điều kiện của ẩn.
Trả lời: Giá niêm yết của một chiếc tủ lạnh là 15,2 triệu đồng và giá niêm yết của một chiếc máy giặt là 10,2 triệu đồng.
Bài 6. Hai người thợ cùng làm công việc trong 16 giờ thì xong. Nếu người thứ nhất làm một mình trong 15 giờ rồi người thứ hai làm tiếp 6 giờ thì hoàn thành được 75% công việc. Hỏi mỗi người làm công việc đó một mình hoàn thành trong bao lâu?
Hướng dẫn giải
– Gọi x là số giờ để người thứ nhất hoàn thành công việc nếu làm một mình; y là số giờ để người thứ hai hoàn thành công việc nếu làm một mình. Điều kiện: x > 0 và y > 0.
Mỗi giờ người thứ nhất làm được (công việc) và người thứ hai làm được (công việc).
Hai người cùng làm công việc trong 16 giờ thì xong nên mỗi giờ, hai người làm chung thì được (công việc). Ta có phương trình:
Người thứ nhất làm một mình trong 15 giờ thì được (công việc).
Người thứ hai làm một mình trong 6 giờ thì được (công việc).
Nếu người thứ nhất làm một mình trong 15 giờ rồi người thứ hai làm tiếp 6 giờ thì hoàn thành được 75% công việc nên ta có phương trình:
Từ (1) và (2) ta có hệ phương trình:
Nếu đặt và thì ta có hệ phương trình bậc nhất hai ẩn mới là u và v như sau:
Giải hệ (II):
Nhân hai vế của phương trình (3) với 6, ta được hệ hay
Trừ từng vế hai phương trình của hệ trên, ta được: hay suy ra
Thay vào phương trình (3), ta được: suy ra
Từ đó, ta có:
⦁ suy ra x = 24;
⦁ suy ra y = 48.
– Các giá trị tìm được của x và y thỏa mãn điều kiện của ẩn.
Trả lời: Nếu làm một mình thì người thứ nhất làm xong công việc trong 24 giờ, còn người thứ hai làm xong trong 48 giờ.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 9 Kết nối tri thức hay, chi tiết khác: