Lý thuyết Toán 9 Chương 4 (Cánh diều): Hệ thức lượng trong tam giác vuông

541

Với tóm tắt lý thuyết Toán lớp 9 Chương 4: Hệ thức lượng trong tam giác vuông sách Cánh diều hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.

Lý thuyết Toán 9 Chương 4: Hệ thức lượng trong tam giác vuông

A. Lý thuyết Toán 9 Chương 4: Hệ thức lượng trong tam giác vuông

1. Tỉ số lượng giác của góc nhọn

Cho góc nhọn α. Xét tam giác ABC vuông tại A có

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

⦁ Tỉ số giữa cạnh đối và cạnh huyền được gọi là sin của góc α, kí hiệu là sinα.

⦁ Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc α, kí hiệu cosα.

⦁ Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc α, kí hiệu là tanα.

⦁ Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc α, kí hiệu cotα.

Bốn tỉ số trên được gọi là các tỉ số lượng giác của góc nhọn α.

Trong hình vẽ trên, ta có:

sinB^=ACBC;cosB^=ABBC;tanB^=ACAB;cotB^=ABAC.

Nhận xét:

⦁ Các tỉ số lượng giác của góc nhọn α không phụ thuộc vào việc chọn tam giác vuông có góc nhọn α. Thật vậy, nếu hai tam giác ABC, A’B’C’ lần lượt vuông tại A, A’ và có ABC^=A'B'C'^=α thì ∆ABC ᔕ∆A’B’C’, suy ra

ACBC=A'C'B'C';ABBC=A'B'B'C';ACAB=A'C'A'B';ABAC=A'B'A'C'.

⦁ Khi không sợ nhầm lẫn, ta có thể viết sinB, cosB, tanB, cotB lần lượt thay cho các kí hiệu sinB^,cosB^,tanB^,cotB^.

⦁ Từ định nghĩa trên, ta thấy các tỉ số lượng giác của góc nhọn α luôn dương và sinα < 1, cosα < 1, cotα=1tanα.

2. Tỉ số lượng giác của hai góc phụ nhau

Hai góc nhọn có tổng bằng 90° được gọi là hai góc phụ nhau.

Định lí: Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Nhận xét: Với 0° < α < 90°, ta có:

 sin(90° – α) = cosα;

 cos(90° – α) = sinα;

 tan(90° – α) = cotα;

 cot(90° – α) = tanα.

Ta có bảng tỉ số lượng giác của các góc nhọn đặc biệt như sau:

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Lưu ý: Ta quy ước:

 sin2α = (sinα)2;

 cos2α = (cosα)2;

 tan2α = (tanα)2;

 cot2α = (cotα)2.

3. Sử dụng máy tính cầm tay để tính tỉ số lượng giác của một góc nhọn

3.1. Tính tỉ số lượng giác của một góc nhọn

Cùng với đơn vị đo góc là độ (kí hiệu: °), người ta còn sử dụng những đơn vị đo góc khác là: phút (kí hiệu: ’); giây (kí hiệu: ’’) với quy ước: 1° = 60’; 1’ = 60’’.

Ta có thể tính (đúng hoặc gần đúng) tỉ số lượng giác của một góc nhọn bằng cách sử dụng các phím: sin,  cos,  tan trên máy tính cầm tay. Trước hết, ta đưa máy tính về chế độ “độ”. Để nhập độ, phút, giây, ta sử dụng phím °    .

Chẳng hạn, để tính sin35° và tan70°25’43’’, ta thực hiện như sau:

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Sử dụng tính chất cotα = tan(90° – α), ta có thể tính được côtang của một góc nhọn. Chẳng hạn, ta tính cot14° như sau:

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Nhận xét: Ta có thể tính cotα theo công thức: cotα=1tanα.

3.2. Tính số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó

Để tính (đúng hoặc gần đúng) số đo của một góc nhọn khi biết một tỉ số lượng giác của góc đó ta sử dụng các phím: SHIFT cùng với sin,  cos,  tan và kết hợp với tỉ số lượng giác của góc đó. Trước hết, ta đưa máy tính về chế độ “độ”.

Ví dụ: Tính số đo các góc nhọn sau (làm tròn kết quả đến hàng đơn vị của độ):

a) sinα = 0,46;

b) cosβ = 0,15;

c) tanγ=14.

Hướng dẫn giải

Ta có thể thực hiện như sau:

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Nhận xét: Ta có thể tính số đo góc nhọn α khi biết cotα bằng cách tínhtanα theo công thức: tanα=1cotα.

4. Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn

Định lí: Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh huyền nhân với sin của góc đối hoặc nhân với côsin góc kề.

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Trong hình vẽ trên, ta có:

⦁ AC = BC.sinB = BC.cosC;

⦁ AB = BC.sinC = BC.cosB.

5. Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn

Định lí: Trong tam giác vuông, mỗi cạnh góc vuông bằng cạnh góc vuông kia nhân với tang của góc đối hoặc nhân với côtang của góc kề.

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Trong hình vẽ trên, ta có:

 AC = AB.tanB = AB.cotC;

 AB = AC.tanC = AC.cotB.

6. Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông

Trong một tam giác vuông, nếu cho biết độ dài hai cạnh hoặc độ dài một cạnh và số đo một góc nhọn thì ta sẽ tìm được tất cả độ dài các cạnh và số đo các góc còn lại của tam giác đó. Bài toán đặt ra như thế gọi là bài toán “giải tam giác vuông”.

Lưu ý rằng, trong kết quả của các ví dụ sau đây, nếu không nói gì thêm thì ta làm tròn đến hàng đơn vị của độ (với số đo góc) và đến hàng phần mười của centimét (với số đo độ dài).

7. Ước lượng khoảng cách

Từ xưa, người ta đã biết cách ứng dụng lượng giác để ước lượng khoảng cách. Bằng cách sử dụng tỉ số lượng giác của góc nhọn, ta có thể ước lượng khoảng cách giữa hai vị trí khi khó đo trực tiếp khoảng cách giữa hai vị trí đó.

Ví dụ: Để đo khoảng cách giữa hai vị trí B, C khi không thể đo trực tiếp (Hình a), người ta có thể làm như sau (Hình b):

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

– Sử dụng giác kế (một loại dụng cụ để đo góc, xem hình dưới), chọn điểm A ở vị trí thích hợp sao cho góc ACB là góc vuông. Đo khoảng cách AC;

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

– Sử dụng giác kế để đo góc BAC;

– Từ đó, tính khoảng cách BC.

a) Theo cách làm trên, nêu công thức tính khoảng cách giữa hai vị trí B, C.

b) Tính khoảng cách giữa hai vị trí B, C, biết AC = 5 m và BAC^=72°(làm tròn kết quả đến hàng phần trăm của mét).

Hướng dẫn giải

a) Vì tam giác ABC vuông tại C nên BC = AC.tanA.

b) Ta có AC = 5 m và BAC^=72°.

Suy ra BC = 5.tan72° ≈ 15,39 (m)

Vậy khoảng cách giữa hai vị trí B, C bằng khoảng 15,39 m.

8. Ước lượng chiều cao

Ví dụ: Để ước lượng chiều cao của một tháp mà không cần lên đỉnh tháp, người ta sử dụng giác kế, thước cuộn, máy tính cầm tay.

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Chẳng hạn, ở hình vẽ trên, để đo chiều cao AD của tháp, người ta đặt giác kế tại một điểm quan sát cách chân tháp một khoảng CD = OB = a, trong đó chiều cao của điểm đặt giác kế là OC = b. Quay thanh giác kế sao cho khi ngắm thanh này ta nhìn thấy đỉnh A của tháp, đọc trên giác kế số đo α của góc AOB.Tính chiều cao của tháp, biết α = 54°; b = 22,31 m; a = 106 m (làm tròn kết quả đến hàng phần trăm của mét).

Hướng dẫn giải

Vì tam giác OAB vuông tại B nên:

AB=OBtanAOB^=106tan54°145,90(m).

Vậy chiều cao của tháp khoảng 145,90 + 22,31 = 168,21 (m).

B. Bài tập Toán 9 Chương 4: Hệ thức lượng trong tam giác vuông

I. Bài tập trắc nghiệm

Bài 1. Khi sử dụng máy tính cầm tay để tính (gần đúng) tỉ số lượng giác cos15°25’, ta nhập vào máy tính cầm tay như thế nào? (Giả sử máy tính cầm tay ở chế độ “độ”).

A. cos    1    5  °      2  5  °      =;

B. SHIFT  cos    1    5  °      2  5  °      =;

C. cos    1    5  °      0  °      2  5  °      =;

D. SHIFT  cos    1    5  °      0  °      2  5  °      =.

Đáp án đúng là: A

Ta thực hiện như sau:

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Vậy ta chọn phương án A.

Bài 2. Cho tam giác ABC vuông tại A có AC = 20 cm, C^=60°. Độ dài các cạnh AB, BC lần lượt là

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

A. 203cm và 40 cm;

B. 203 cm và 403 cm;

C. 20 cm và 40 cm;

D. 20 cm và 203 cm.

Hướng dẫn giải

Đáp án đúng là: A

Tam giác ABC vuông tại A nên ta có:

⦁AB = AC.tanC = 20.tan60° = 203 cm;

⦁AC = BC.cosC, suy ra BC=ACcosC=20cos60°=40 cm.

Vậy AB=203 cm, BC = 40 cm. Ta chọn phương án A.

Bài 3. Bạn Linh đứng ở mặt đất cách một tòa tháp một khoảng 120 m dùng giác kế nhìn thấy đỉnh tháp ở góc 53° so với đường nằm ngang song song với mặt đất. Biết giác kế có chiều cao 1,6 m.

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Chiều cao (làm tròn kết quả đến hàng phần trăm)của tháp là

A. 160,1 m;

B. 159,25 m;

C. 160,8 m;

D. 160,85 m.

Hướng dẫn giải

Đáp án đúng là: D

Ta có CD = AB = 120 (m) và BC = AD = 1,6 (m).

Tam giác CDE vuông tại C nên

CE=CDtanCDE^=120tan53°159,25 (m).

Vậy chiều cao của tháp khoảng: 159,25 + 1,6 ≈ 160,85 (m).

Bài 4. Cho α và β là hai góc nhọn bất kì thỏa mãn α + β = 90°. Khẳng định đúng là

A. tanα = sinβ;

B. tanα = cotβ;

C. tanα = cosα;

D. tanα = tanβ.

Hướng dẫn giải

Đáp án đúng là: B

Ta có α và β là hai góc nhọn bất kì thỏa mãn α + β = 90°.

Suy ra α và β là hai góc phụ nhau và β = 90° – α.

Áp dụng định lí về tỉ số lượng giác của hai góc phụ nhau, ta được:

tanα = cot(90° – α) = cotβ.

Vậy ta chọn phương án B.

Bài 5. Cho tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng?

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

A. MN = MP.sinP;

B. MN = MP.cosP;

C. MN = MP.tanP;

D. MN = MP.cotP.

Hướng dẫn giải

Đáp án đúng là: A

Tam giác MNP vuông tại N nên MN = MP.sinP.

II. Bài tập tự luận

Bài 1. Tính giá trị các biểu thức sau mà không sử dụng máy tính bỏ túi:

a) M = sin15° + sin20° – cos70° – cos75°.

b) N=tan74°tan59°cot16°cot31°.

c) P = 3cos50° – 3sin40° + 2cot45°.

d) Q=4cos260°sin30°tan30°.

Hướng dẫn giải

a) M = sin15° + sin20° – cos70° – cos75°

= cos(90° – 15°) + cos(90° – 20°) – cos70° – cos75°

= cos75° + cos70° – cos70° – cos75°

= (cos75° – cos75°) + (cos70° – cos70°)

= 0.

b) N=tan74°tan59°cot16°cot31°

=tan74°tan59°tan90°16°tan90°31°

=tan74°.tan59°tan74°.tan59°

= 1.

c) P = 3cos50° – 3sin40° + 2cot45°

= 3cos50° – 3cos(90° – 40°) + 2cot45°

= 3cos50° – 3cos50° + 2cot45°

= 2cot45°

= 2.1 = 2.

d) Q=4cos260°sin30°tan30°

=4cos260°cos90°30°tan30°

=4cos260°cos60°tan30°

= 4cos60° – tan30°

=41233=633.

Bài 2. Cho tam giác ABC vuông tại A (AB > AC), đường cao AH chia cạnh BC thành hai đoạn thẳng CH = 4 cm, BH = 9 cm. Kẻ HM ⊥ AB tại M, HN ⊥ AC tại N. Tính độ dài đoạn thẳng AH và số đo góc B, góc C của tam giác ABC (làm tròn kết quả đến phút).

Hướng dẫn giải

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Xét ∆ACH và ∆BAH, có:

AHC^=BHA^=90°;

CAH^=HBA^ (cùng phụ với ACB^).

Do đó ∆ACH ᔕ∆BAH (g.g).

Suy ra CHAH=AHBH.

Do đó AH2 = CH.BH = 4.9 = 36.

Vì vậy AH = 6 (cm).

Tam giác AHB vuông tại H nên tanABH^=AHBH=69=23.

Suy ra ABH^33°41'.

Tam giác ACH vuông tại H nên tanACH^=AHCH=64=32.

Suy ra ACH^56°19'.

Vậy AH = 6 cm; ABH^33°41'  ACH^56°19'.

Bài 3. Cho tam giác ABC vuông tại A có AB = 21 cm; C^=38°. Tính:

a) AC, BC.

b) Số đo B^.

c) Độ dài đoạn thẳng BD với BD là phân giác của góc ABC.

Hướng dẫn giải

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

a) Tam giác ABC vuông tại A nên ta có:

 AC = AB.cotC = 21.cot38° ≈ 26,9 (cm);

 AB = BC.sinC hay BC=ABsinC=21sin38°34,1(cm).

Vậy AC ≈ 26,9 cm và BC ≈ 34,1 cm.

b) Tam giác ABC vuông tại A nên ta có:

ABC^+ACB^=90° (tổng hai góc nhọn trong tam giác vuông bằng 90°).

Suy ra ABC^=90°ACB^=90°38°=52°.

c) Ta có BD là phân giác của ABC^ nên ABD^=ABC^2=52°2=26°.

Tam giác ABD vuông tại A nên AB=BD.cosABD^.

Suy ra BD=ABcosABD^=21cos26°23,4(cm)

Vậy BD ≈ 23,4 cm.

Bài 4. Cho hình thang ABCD vuông tại A và D, C^=50°. Biết AB = 2, AD=65. Tính diện tích của hình thang ABCD (làm tròn kết quả đến hàng phần mười).

Hướng dẫn giải

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Kẻ BE ⊥ CD tại E.

Ta có BAD^=ADE^=BED^=90° nên tứ giác ABED là hình chữ nhật.

Do đó BE=AD=65 và DE = AB = 2.

Tam giác BEC vuông tại E nên tanBCE^=BEEC.

Suy ra EC=BEtanBCE^=65tan50°1.

Do đó DC = DE + EC ≈ 2 + 1 = 3.

Diện tích hình thang vuông ABCD là:

SABCD=12ADAB+CD12652+3=3(đvdt).

Bài 5. Cho tam giác ABC cân tại A, đường cao CH = Giải tam giác ABC (làm tròn đến hàng phần mười của đơn vị độ dài).

Hướng dẫn giải

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Vì tam giác ABC cân tại A nên ACB^=ABC^=65°.

Tam giác ABC, có: BAC^+ACB^+ABC^=180°(tổng ba góc của một tam giác)

Suy ra BAC^=180°ACB^+ABC^=180°65°+65°=50°.

Tam giác BCH vuông tại H nên sinCBH^=CHBC.

Suy ra BC=CHsinCBH^=185sin65°4,0.

Tam giác AHC vuông tại H nên sinHAC^=CHAC.

Suy ra AC=CHsinHAC^=185sin50°4,7.

Vì tam giác ABC cân tại A nên AB = AC ≈ 4,7.

Vậy AB = AC ≈ 4,7; BC ≈ 4; ACB^=65°  BAC^=50°.

Bài 6. Một người đứng cách tòa nhà một khoảng 10 m. Góc nâng từ chỗ người đó đứng đến nóc nhà là 40°. Nếu người đó dịch chuyển ra xa sao cho góc nâng là 35° thì lúc đó người đó cách tòa nhà bao nhiêu mét?

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Hướng dẫn giải

Tam giác ABC vuông tại A nên AB=ACtanACB^=10tan40°8,39(m).

Tam giác ABD vuông tại A nên AD=ABcotADB^8,39cot35°11,98(m).

Vậy nếu người đó dịch chuyển ra xa sao cho góc nâng là 35° thì lúc đó người đó cách tòa nhà khoảng 11,98 m.

Bài 7. Màn ảnh rộng hình chữ nhật được đặt ở độ cao 1,8 m so với tầm mắt (tính từ mép màn hình). Để nhìn rõ, bạn Bình ngồi cách màn hình 2,4 m. Tính chiều cao màn hình? Biết góc nhìn của bạn Bình là 16° (làm tròn kết quả đến hàng phần trăm đối với độ dài và làm tròn kết quả đến phút đối với góc).

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Hướng dẫn giải

Tam giác ABH vuông tại H nên: tanBAH^=BHAH=1,82,4=34.

Suy ra BAH^36°52'.

Khi đó CAH^=CAB^+BAH^16°+36°52'52°52'.

Tam giác CAH vuông tại H nên

CH=AHtanCAH^2,4tan52°52'3,17(m).

Vậy chiều cao màn hình là: CH – BH ≈ 3,17 – 1,8 = 1,37 (m).

Bài 8. Từ nóc một tòa cao ốc 50 m người ta nhìn thấy chân và đỉnh một ăng-ten với các góc hạ và nâng lần lượt là 62° và 34° (hình vẽ). Tính chiều cao của cột ăng-ten (làm tròn kết quả đến hàng phần trăm).

Tổng hợp lý thuyết Toán 9 Chương 4 Cánh diều

Hướng dẫn giải

Ta có tứ giác ABDC là hình chữ nhật nên DC = AB = 50 (m).

Tam giác BCD vuông tại D nên

BD=DCcotDBC^=50cot62°26,59 (m).

Tam giác BDE vuông tại D nên

DE=BDtanDBE^26,59tan34°17,94 (m).

Vậy chiều cao của cột ăng-ten khoảng:

EC = DE + DC ≈ 17,94 + 50 ≈ 67,94 (m).

Đánh giá

0

0 đánh giá