Với giải sách bài tập Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Bài 37 trang 75 SBT Toán 8 Tập 2: Quan sát Hình 36 và chỉ ra một cặp tam giác đồng dạng:
Lời giải:
Ta có
Do đó:
Xét ∆ABC và ∆EDF có:
và
Suy ra ∆ABC ᔕ ∆EDF (c.g.c).
Lời giải:
Ta có: .
Suy ra
Xét ∆ACB và ∆DCA có:
và là góc chung
Suy ra ∆ACB ᔕ ∆DCA (c.g.c).
Do đó (tỉ số đồng dạng)
Hay nên (cm).
Vậy AD = 8 cm.
a) ∆OBE ᔕ ∆OFC;
b) BE // CF.
Lời giải:
a) Do NF // AB, mà M ∈ AB nên NF // MB.
Xét ∆OBM với NF // MB, ta có (hệ quả của định lí Thalès) (1).
Do ME // CD, mà N ∈ CD nên ME // NC.
Xét ∆OEM với ME // NC, ta có (hệ quả của định lí Thalès) (2).
Từ (1) và (2) ta có:
Xét ∆OBE và ∆OFC có:
(hai góc đối đỉnh) và (chứng minh trên)
Suy ra ∆OBE ᔕ ∆OFC (c.g.c).
b) Theo câu a, ta có ∆OBE ᔕ ∆OFC nên (hai góc tương ứng)
Mà hai góc và ở vị trí so le trong nên suy ra BE // CF.
a) Tam giác HAB và tam giác KAC.
b) Tam giác HKC và tam giác BAC.
Lời giải:
a) • Tam giác HAB vuông cân tại H nên HA = HB và HA2 + HB2 = AB2 (định lí Pythagore)
Do đó 2HA2 = AB2 = 52 = 25 hay
Suy ra (cm).
• Tam giác KAC vuông cân tại K nên KA = KC và KA2 + KC2 = AC2 (định lí Pythagore)
Do đó 2KA2 = AC2 = 122 = 144 hay
Suy ra (cm).
Ta có: , , nên
Xét ∆HAB và ∆KAC có:
và (chứng minh trên)
Suy ra ∆HAB ᔕ ∆KAC (c.g.c).
b) Ta có: ∆AHB vuông cân tại H nên
∆AKC vuông cân tại K nên
Do đó =
Suy ra ba điểm H, A, K thẳng hàng.
Khi đó = (cm).
⦁ ∆HKC vuông tại K và có hai cạnh góc vuông là: (cm), (cm).
∆BAC vuông tại A và có hai cạnh góc vuông là AB = 5 cm, AC = 12 cm.
Ta có: ,
Ta thấy
Do đó tam giác HKC không đồng dạng với tam giác BAC.
a) ∆FDG ᔕ ∆ECG;
b) ∆GDC ᔕ ∆GFE;
c)
Lời giải:
a) Xét ∆GDC với AB // CD, ta có (hệ quả của định lí Thalès)
Do đó
Mặt khác AG = CE, BG = DF nên
Xét ∆FDG và ∆ECG có:
và
Suy ra ∆FDG ᔕ ∆ECG (c.g.c).
b) Vì ∆FDG ᔕ ∆ECG (câu a) nên (hai góc tương ứng) và (tỉ số đồng dạng)
Từ ta có hay
Từ ta có
Xét ∆GDC và ∆GFE có:
và (chứng minh trên)
Suy ra ∆GDC ᔕ ∆GFE (c.g.c).
c) Vì ∆GDC ᔕ ∆GFE (câu b) nên (hai góc tương ứng)
Mà nên
Lời giải:
Gọi E là trung điểm của AD nên AD = 2AE, AE = ED.
Mà AD = 2DB (giả thiết)
Suy ra AE = ED = DB
Do đó AB = AE + ED + BD = 3AE
Mà AB = 3AC (giả thiết) nên AE = AC hay AE = ED = DB = AC.
Đặt AE = x (x > 0).
Suy ra AE = ED = DB = AC = x, EB = 2x.
Xét ∆ACE vuông tại A, theo định lí Pythagore, ta có:
CE2 = AC2 + AE2 = x2 + x2 = 2x2
Suy ra
Ta có: , nên
Xét ∆EDC và ∆ECB có:
là góc chung và (chứng minh trên)
Suy ra ∆EDC ᔕ ∆ECB (c.g.c).
Do đó (hai góc tương ứng)
Vì vậy
Mặt khác, là góc ngoài tại đỉnh E của ∆CED nên
Do đó
Lại có, do ∆AEC là tam giác vuông cân tại A nên
Vậy .
Bài 43* trang 76 SBT Toán 8 Tập 2: Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm. Chứng minh:
Lời giải:
Trên đoạn thẳng BC lấy điểm D sao cho BD = 1 cm.
Suy ra CD = BC ‒ BD = 4 ‒ 1 = 3 cm.
Ta có: nên
Xét ∆ABD và ∆CBA có:
là góc chung và
Suy ra ∆ABD ᔕ ∆CBA (c.g.c).
Do đó (hai góc tương ứng) (1).
Tam giác ADC có CD = CA = 3 cm nên là tam giác cân tại C, do đó (2).
Từ (1) và (2), ta có:
Mặt khác, là góc ngoài tại đỉnh D của ∆ABD nên
Do đó =
Vậy .
Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác:
Bài 6: Trường hợp đồng dạng thứ nhất của tam giác
Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Bài 8: Trường hợp đồng dạng thứ ba của tam giác
Lý thuyết Trường hợp đồng dạng thứ hai của tam giác
1. Trường hợp đồng dạng thứ hai: Cạnh – góc – cạnh
Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.
2. Trường hợp đồng dạng thứ hai của tam giác vuông
Nếu tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
(2cgv)