Giải SBT Toán 8 trang 76 Tập 2 Cánh diều

321

Với lời giải SBT Toán 8 trang 76 Tập 2 Bài 7: Trường hợp đồng dạng thứ hai của tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Bài 42* trang 76 SBT Toán 8 Tập 2Cho tam giác ABC vuông ở A có AB = 3AC và điểm D thuộc cạnh AB sao cho AD = 2DB. Chứng minh: ADC^+ABC^=45°.

Lời giải:

Cho tam giác ABC vuông ở A có AB = 3AC và điểm D thuộc cạnh AB sao cho AD = 2DB

Gọi E là trung điểm của AD nên AD = 2AE, AE = ED.

Mà AD = 2DB (giả thiết)

Suy ra AE = ED = DB

Do đó AB = AE + ED + BD = 3AE

Mà AB = 3AC (giả thiết) nên AE = AC hay AE = ED = DB = AC.

Đặt AE = x (x > 0).

Suy ra AE = ED = DB = AC = x, EB = 2x.

Xét ∆ACE vuông tại A, theo định lí Pythagore, ta có:

CE2 = AC2 + AE2 = x2 + x2 = 2x2

Suy ra CE=x2.

Ta có: EDEC=xx2=12ECEB=x22x=12 nên EDEC=ECEB

Xét ∆EDC và ∆ECB có:

CEB^ là góc chung và EDEC=ECEB (chứng minh trên)

Suy ra ∆EDC ᔕ ∆ECB (c.g.c).

Do đó ECD^=EBC^ (hai góc tương ứng)

Vì vậy ADC^+ABC^=EDC^+EBC^=EDC^+ECD^

Mặt khác, AEC^ là góc ngoài tại đỉnh E của ∆CED nên AEC^=EDC^+ECD^

Do đó ADC^+ABC^=AEC^.

Lại có, do ∆AEC là tam giác vuông cân tại A nên AEC^=45°

Vậy ADC^+ABC^=45°.

Bài 43* trang 76 SBT Toán 8 Tập 2Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm. Chứng minh: BAC^=ABC^+2BCA^.

Lời giải:

Cho tam giác ABC có AB = 2 cm, AC = 3 cm, BC = 4 cm

Trên đoạn thẳng BC lấy điểm D sao cho BD = 1 cm.

Suy ra CD = BC ‒ BD = 4 ‒ 1 = 3 cm.

Ta có: BDBA=12; ABCB=24=12nên BDBA=ABCB=12.

Xét ∆ABD và ∆CBA có:

ABC^ là góc chung và BDBA=ABCB

Suy ra ∆ABD ᔕ ∆CBA (c.g.c).

Do đó BAD^=BCA^ (hai góc tương ứng) (1).

Tam giác ADC có CD = CA = 3 cm nên là tam giác cân tại C, do đó DAC^=ADC^ (2).

Từ (1) và (2), ta có:

BAC^=BAD^+DAC^=BCA^+ADC^.

Mặt khác, ADC^ là góc ngoài tại đỉnh D của ∆ABD nên ADC^=BAD^+ABD^.

Do đó BAC^=BCA^+BAD^+ABD^ = BCA^+BCA^+ABC^=ABC^+2BCA^

Vậy BAC^=ABC^+2BCA^.

Đánh giá

0

0 đánh giá