Giải SBT Toán 8 trang 75 Tập 2 Cánh diều

1.2 K

Với lời giải SBT Toán 8 trang 75 Tập 2 Bài 7: Trường hợp đồng dạng thứ hai của tam giác sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Bài 37 trang 75 SBT Toán 8 Tập 2Quan sát Hình 36 và chỉ ra một cặp tam giác đồng dạng:

Quan sát Hình 36 và chỉ ra một cặp tam giác đồng dạng trang 75

Lời giải:

Ta có ABDE=53;BCDF=106=53.

Do đó: ABED=BCDF

Xét ∆ABC và ∆EDF có:

ABED=BCDF và ABC^=EDF^=60°

Suy ra ∆ABC ᔕ ∆EDF (c.g.c).

Bài 38 trang 75 SBT Toán 8 Tập 2Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC sao cho CD = 12 cm. Tính độ dài AD.

Lời giải:

Cho tam giác ABC có AB = 12 cm, AC = 18 cm, BC = 27 cm. Điểm D thuộc cạnh BC

Ta có: ACDC=1812=32; CBCA=2718=32.

Suy ra ACDC=CBCA=32.

Xét ∆ACB và ∆DCA có:

ACDC=CBCA và ACB^ là góc chung

Suy ra ∆ACB ᔕ ∆DCA (c.g.c).

Do đó ACDC=ABDA (tỉ số đồng dạng)

Hay 1812=12AD nên AD=121218=8  (cm).

Vậy AD = 8 cm.

Bài 39 trang 75 SBT Toán 8 Tập 2Trong Hình 37, cho O là giao điểm hai đường chéo AC và BD của tứ giác ABCD. Kẻ một đường thẳng tuỳ ý đi qua O và cắt cạnh AB tại M, CD tại N. Đường thẳng qua M song song với CD cắt AC tại E và đường thẳng qua N song song với AB cắt BD tại F. Chứng minh:

a) ∆OBE ᔕ ∆OFC;

b) BE // CF.

Trong Hình 37, cho O là giao điểm hai đường chéo AC và BD của tứ giác ABCD

Lời giải:

a) Do NF // AB, mà M ∈ AB nên NF // MB.

Xét ∆OBM với NF // MB, ta có OBOF=OMON (hệ quả của định lí Thalès) (1).

Do ME // CD, mà N ∈ CD nên ME // NC.

Xét ∆OEM với ME // NC, ta có OEOC=OMON (hệ quả của định lí Thalès) (2).

Từ (1) và (2) ta có: OBOF=OEOC =OMON

Xét ∆OBE và ∆OFC có:

BOE^=FOC^ (hai góc đối đỉnh) và OBOF=OEOC (chứng minh trên)

Suy ra ∆OBE ᔕ ∆OFC (c.g.c).

b) Theo câu a, ta có ∆OBE ᔕ ∆OFC nên EBO^=OFC^ (hai góc tương ứng)

Mà hai góc EBO^ và OFC^ ở vị trí so le trong nên suy ra BE // CF.

Bài 40 trang 75 SBT Toán 8 Tập 2Hình 38 cho biết tam giác ABC vuông ở A, AB = 5 cm, AC = 12 cm. Tam giác HAB vuông cân tại H, tam giác KAC vuông cân tại K. Các cặp tam giác sau có đồng dạng với nhau không? Vì sao?

a) Tam giác HAB và tam giác KAC.

b) Tam giác HKC và tam giác BAC.

Hình 38 cho biết tam giác ABC vuông ở A, AB = 5 cm, AC = 12 cm. Tam giác HAB

Lời giải:

a) • Tam giác HAB vuông cân tại H nên HA = HB và HA2 + HB2 = AB2 (định lí Pythagore)

Do đó 2HA2 = AB2 = 52 = 25 hay HA2=HB2=252=522

Suy ra HA=HB=52 (cm).

• Tam giác KAC vuông cân tại K nên KA = KC và KA2 + KC2 = AC2 (định lí Pythagore)

Do đó 2KA2 = AC2 = 122 = 144 hay KA2=KB2=1442=1222

Suy ra KA=KC=122 (cm).

Ta có: HAKA=52122=512HBKB=52122=512, nên HAKA=HBKC

Xét ∆HAB và ∆KAC có:

AHB^=AKC^=90° và HAKA=HBKC (chứng minh trên)

Suy ra ∆HAB ᔕ ∆KAC (c.g.c).

b) Ta có: ∆AHB vuông cân tại H nên HAB^=45°;

∆AKC vuông cân tại K nên KAC^=45°.

Do đó HAK^=HAB^+BAC^+KAC^ = 45°+90°+45°=180°.

Suy ra ba điểm H, A, K thẳng hàng.

Khi đó HK=AH+AK = 52+122=172 (cm).

⦁ ∆HKC vuông tại K và có hai cạnh góc vuông là: HK=172 (cm), KC=122 (cm).

∆BAC vuông tại A và có hai cạnh góc vuông là AB = 5 cm, AC = 12 cm.

Ta có: HKAB=1725=1752KCAC=12212=12

Ta thấy HKABKCAC

Do đó tam giác HKC không đồng dạng với tam giác BAC.

Bài 41 trang 75, 76 SBT Toán 8 Tập 2Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, ABD^=90°. Hai đường chéo AC và BD cắt nhau tại G. Điểm E nằm trên đường vuông góc với AC tại C thỏa mãn CE = AG và đoạn thẳng GE không cắt đường thẳng CD. Điểm F nằm trên đoạn thẳng DC và DF = GB. Chứng minh:

a) ∆FDG ᔕ ∆ECG;

b) ∆GDC ᔕ ∆GFE;

c) GFE^=90°.

Hình thang ABCD ở Hình 39 có AB // CD, AB < CD, góc ABD = 90 độ

Lời giải:

a) Xét ∆GDC với AB // CD, ta có BGGD=AGGC (hệ quả của định lí Thalès)

Do đó BGAG=GDGC.

Mặt khác AG = CE, BG = DF nên DFCE=GDGC.

Xét ∆FDG và ∆ECG có:

GDF^=GCE^=90° và DFCE=GDGC

Suy ra ∆FDG ᔕ ∆ECG (c.g.c).

b) Vì ∆FDG ᔕ ∆ECG (câu a) nên DGF^=CGE^ (hai góc tương ứng) và DGCG=GFGE (tỉ số đồng dạng)

Từ DGF^=CGE^ ta có DGF^+FGC^=CGE^+FGC^ hay DGC^=FGE^.

Từ DGCG=GFGE ta có GDGF=GCGE.

Xét ∆GDC và ∆GFE có:

DGC^=FGE^ và GDGF=GCGE (chứng minh trên)

Suy ra ∆GDC ᔕ ∆GFE (c.g.c).

c) Vì ∆GDC ᔕ ∆GFE (câu b) nên GDC^=GFE^ (hai góc tương ứng)

Mà GDC^=90° nên GFE^=90°.

Đánh giá

0

0 đánh giá