Sách bài tập Toán 8 Bài 4 (Cánh diều): Tính chất đường phân giác của tam giác

1.8 K

Với giải sách bài tập Toán 8 Bài 4: Tính chất đường phân giác của tam giác sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 4: Tính chất đường phân giác của tam giác

Giải SBT Toán 8 trang 67

Bài 21 trang 67 SBT Toán 8 Tập 2Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, có hai đường phân giác AD, BE cắt nhau tại O. Tính:

a) Độ dài các đoạn thẳng AE, EC;

b) Khoảng cách từ O đến đường thẳng AC;

c) Độ dài đường phân giác AD (theo đơn vị centimét và làm tròn kết quả đến hàng phần mười);

d) Diện tích tam giác DOE.

Lời giải:

Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, có hai đường phân giác AD

a) Xét ∆ABC vuông tại A nên theo định lí Pythagore, ta có:

BC2 = AC2 + AB2 = 62 + 82 = 100, suy ra BC = 10 (cm).

Xét ∆ABC có BE là phân giác góc ABC nên EAEC=BABC=810=45 (tính chất đường phân giác).

Suy ra AE4=EC5=AE+EC4+5=AC9=69=23

Vậy AE=423=83 (cm); EC=523=103 (cm).

b) Kẻ OH ⊥ AC tại H. Khi đó khoảng cách từ O đến đường thẳng AC là độ dài đoạn thẳng OH.

Ta có OH ⊥ AC, AB ⊥ AC nên OH // AB.

Xét ∆ABE với OH // AB, ta có: HOAB=EOEB (định lí Thalès) (1).

Xét ∆AEB có AO là phân giác của góc CAB nên OEOB=AEAB=838=13 (tính chất đường phân giác)

Suy ra OEOB+OE=13+1 hay EOEB=14 (2).

Từ (1) và (2) ta có HOAB=14, suy ra OH=14AB=148=2 (cm).

c) Kẻ DK ⊥ AC, DI ⊥ AB, suy ra DKA^=DIA^=90°.

Tứ giác AKDI có DKA^=DIA^=KAI^=90° nên AKDI là hình chữ nhật

Lại có đường chéo AD là phân giác KAI^ nên AKDI là hình vuông.

Suy ra AK = DK = DI.

Ta có S∆ABC = S∆ADC + S∆ADB nên ACAB2=ACDK2+ABDI2

Hay AC.AB = AC.DK + AB.DI = (AB + AC).DK (do DK = DI).

Từ đó, ta có: DK=ABACAB+AC=868+6=4814=247.

Xét ∆AKC vuông tại K có AD2 = AK2 + DK2 (định lí Pythagore)

Suy ra AD2 = AK2 + DK2 = DK2 + DK2 = 2DK2

Do đó AD=DK2=24274,8 (cm).

d) Ta có: SΔABC=12ACAB=1268=24 (cm2).

Mà SΔBCESΔBAC=12BAEC12BAAC=ECAC=103:6=59

Do đó SΔBCE=59SΔBAC=5924=403 (cm2).

Tương tự, ta có: SΔBDESΔBCE=DBCB

Xét ∆ABC có AD là đường phân giác của góc CAB nên DBDC=ABAC (tính chất đường phân giác)

Suy ra DBDC+DB=ABAC+AB hay DBCB=88+6=814=47

Nên SΔBDESΔBCE=DBCB=47.

Suy ra SΔBDE =47SΔBCE=47403=16021 (cm2)

Lại có SΔODESΔBDE=OEBE=14

Suy ra SΔDOE=14SΔBDE=1416021=4021 (cm2).

Bài 22 trang 67 SBT Toán 8 Tập 2Cho tam giác ABC có chu vi bằng 74 cm. Đường phân giác của góc A chia cạnh BC thành hai đoạn BD và DC tỉ lệ với 2 và 3, đường phân giác của góc C chia cạnh AB thành hai đoạn EB và EA tỉ lệ với 4 và 5. Tính độ dài các cạnh của tam giác ABC.

Lời giải:

Cho tam giác ABC có chu vi bằng 74 cm. Đường phân giác của góc A chia cạnh BC

Trong ∆ABC có:

AD là phân giác góc A nên ABAC=DBDC=23, suy ra AB2=AC3 hay AB10=AC15 (1)

CE là phân giác góc C nên CBCA=EBEA=45, suy ra BC4=AC5 hay BC12=AC15 (2)

Từ (1) và (2) suy ra: AB10=BC12=AC15.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

AB10=BC12=AC15=AB+BC+AC10+12+15=7437=2.

Vậy: AB = 2.10 = 20 cm;

BC = 2.12 = 24 cm;

AC = 2.15 = 30 cm.

Bài 23 trang 67 SBT Toán 8 Tập 2Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác của góc B cắt AC tại F. Chứng minh:

a) BEED=AFFC;

b) EF // AB.

Lời giải:

Cho hình bình hành ABCD. Đường phân giác của góc A cắt BD tại E, đường phân giác

a) Tam giác ABD có AE là đường phân giác của góc A nên EBED=ABAD (1).

Tam giác ABC có BF là đường phân giác của góc B nên FAFC=BABC (2).

Vì ABCD là hình bình hành nên AD = BC, do đó ABAD=BABC (3)

Từ (1) và (2) suy ra EBED=FAFC.

b) Ta có: EBED=FAFC suy ra EB+EDED=FA+FCFC hay BDED=ACFC

Gọi O là giao điểm hai đường chéo hình bình hành ABCD. Khi đó O là trung điểm của AC, BD nên BD = 2OD và AC = 2OC.

Do đó 2ODED=2OCFC hay ODED=OCFC.

Xét ∆ODC có ODED=OCFC nên EF // CD (định lí Thalès đảo)

Mà AB // CD (do ABCD là hình bình hành)

Do đó EF // AB.

Giải SBT Toán 8 trang 68

Bài 24 trang 68 SBT Toán 8 Tập 2Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm. Đường trung trực của đoạn AD cắt cạnh AC tại E. Tính độ đài của đoạn thẳng DE.

Lời giải:

Cho tam giác ABC có đường phân giác AD và AB = 6 cm, AC = 9 cm

Ta có E nằm trên đường trung trực của đoạn AD nên EA = ED, do đó tam giác AED cân tại E.

Suy ra EDA^=EAD^.

Mà EAD^=DAB^ (do AD là đường phân giác của tam giác ABC)

Do đó EDA^=DAB^

Lại có hai góc EDA^, DAB^ở vị trí so le trong nên DE // AB.

Xét ∆ABC với DE // AB, ta có EDAB=CDCB (hệ quả của định lí Thalès)

Mặt khác, do AD là đường phân giác của góc BAC nên DCDB=ACAB=96=32

Nên DCDC+DB=33+2=35

Suy ra DCBC=35, do đó EDAB=35

Vậy DE=35AB=356=3,6 (cm).

Bài 25 trang 68 SBT Toán 8 Tập 2Một người đứng ở vị trí M trên cây cầu bắc qua con kênh quan sát ba điểm thẳng hàng A, B, D lần lượt là chân hai cột đèn trồng ở bờ kênh và chân cầu (Hình 26). Người đó nhận thấy góc nhìn đến hai điểm A, D thì bằng góc nhìn đến hai điểm B, D, tức là AMD^=BMD^. Người đó muốn ước lượng tỉ số khoảng cách từ vị trí M đang đứng đến điểm A và đến điểm B mà không cần phải đo trực tiếp hai khoảng cách đó. Hỏi có thể ước lượng tỉ số đó được hay không?

Một người đứng ở vị trí M trên cây cầu bắc qua con kênh quan sát ba điểm thẳng

Lời giải:

Ta có AMD^=BMD^ suy ra MD là đường phân giác của góc AMB.

Do đó MAMB=DADB.

Vậy người đó có thể ước lượng được tỉ số khoảng cách từ vị trí M đang đứng đến điểm A và đến điểm B mà không cần phải đo trực tiếp hai khoảng cách đó bằng cách đo các khoảng cách DA, DB và tính DADB.

Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác:

Bài 3: Đường trung bình của tam giác

Bài 4: Tính chất đường phân giác của tam giác

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác

Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Lý thuyết Tính chất đường phân giác của tam giác

Định lí

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.

Lý thuyết Tính chất đường phân giác của tam giác (Cánh diều 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 1)

AD là đường phân giác của góc A trong ΔABCDBC

DBDC=ABAC

Ví dụ:

 Lý thuyết Tính chất đường phân giác của tam giác (Cánh diều 2023) hay, chi tiết | Lý thuyết Toán lớp 8 (ảnh 2)

RS là tia phân giác của góc PRQ^. Sử dụng tính chất đường phân giác, ta có:

SQSR=RQRP105=x62=x6x=12

Vậy độ dài đoạn thẳng RQ là 12.

Đánh giá

0

0 đánh giá