Với lời giải Toán 11 trang 31 Tập 1 chi tiết trong Bài 3: Hàm số lượng giác và đồ thị sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 3: Hàm số lượng giác và đồ thị
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
a) Hàm số y = sinx nhận giá trị bằng 1;
b) Hàm số y = sinx nhận giá trị bằng 0;
c) Hàm số y = cosx nhận giá trị bằng ‒1;
d) Hàm số y = cosx nhận giá trị bằng 0.
Lời giải:
a) Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 1 tại x.
b) Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 0 tại x ∈ {‒2π; ‒π; 0; π; 2π}.
c) Đồ thị hàm số y = cosx:
Quan sát đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng ‒1 tại x ∈ {‒π; π}.
d) Đồ thị hàm số y = cosx:
Quan sát hai đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng 0 tại x.
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng để:
a) Hàm số y = tanx nhận giá trị bằng ‒1;
b) Hàm số y = tanx nhận giá trị bằng 0;
c) Hàm số y = cotx nhận giá trị bằng 1;
d) Hàm số y = cotx nhận giá trị bằng 0.
Lời giải:
a) Xét đồ thị hàm số y = ‒1 và đồ thị hàm số y = tanx trên khoảng :
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = tanx nhận giá trị bằng ‒1 tại x.
b) Xét đồ thị hàm số y = tanx trên khoảng :
Quan sát hình vẽ, ta thấy hàm số y = tanx nhận giá trị bằng 0 tại x ∈ {0; π}.
c) Xét đồ thị hàm số y = 1 và đồ thị hàm số y = cotx trên khoảng :
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = cotx nhận giá trị bằng 1 tại x.
b) Xét đồ thị hàm số y = cotx trên khoảng :
Quan sát hình vẽ, ta thấy hàm số y = cotx nhận giá trị bằng 0 tại x.
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
a) y = sinx trên khoảng ;
b) y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).
Lời giải:
a) Xét hàm số y = sinx:
Do nên hàm số y = sinx đồng biến trên khoảng .
Do nên hàm số y = sinx nghịch biến trên khoảng .
b) Xét hàm số y = cosx:
Do (‒20π; ‒19π) = (0 ‒20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).
Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:
a) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị sao cho sinα = m;
b) Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị α ∈ [0; π] sao cho cosα = m;
c) Với mỗi m ∈ ℝ, có bao nhiêu giá trị sao cho tanα = m;
d) Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ [0; π] sao cho cotα = m.
Lời giải:
a) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = sinx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ [‒1;1] sẽ có 1 giá trị sao cho sinα = m.
b) Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy m ∈ [‒1;1] sẽ có 1 giá trị α ∈ [0; π] sao cho cosα = m.
c) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên :
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị sao cho tanα = m.
d) Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị α ∈ [0; π] sao cho cotα = m.
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:
a) y = sinx cosx;
b) y = tanx + cotx;
c) y = sin2x.
Lời giải:
a) Xét hàm số f(x) = y = sinx cosx có D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin(‒x) . cos(‒x) = ‒sinx cosx = ‒f(x).
Do đó hàm số y = sinx cosx là hàm số lẻ.
b) Xét hàm số f(x) = y = tanx + cotx có D=R\:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = tan(‒x) + cot(‒x) = (‒tanx) + (‒cotx) = ‒(tanx + cotx) = ‒f(x).
Do đó hàm số y = tanx + cotx là hàm số lẻ.
c) Xét hàm số f(x) = y = sin2x có D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin2(‒x) = (‒sinx)2 = sin2x = f(x).
Do đó hàm số y = tanx + cotx là hàm số chẵn.
a) A = 3 cm, φ = 0;
b) A = 3 cm, ;
c) A = 3 cm, .
Lời giải:
Từ T = ta có .
Khi đó ta có phương trình li độ là x = Acos.
a)
‒ Với A = 3 cm và φ = 0 thay vào phương trình li độ x = Acos ta có:
x = 3cos.
• t = 0 thì x = 3cos0 = 3;
• t = thì x = 3cos= 3cos = 0;
• t = thì x = 3cos = 3cos = -3
• t = thì x = 3cos = 3cos = 0;
• t = T thì x = 3cos = 3cos2 = 3
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T]:
Xét hàm số x = 3cos có chu kì là T.
Ta vẽ đồ thị hàm số x = 3cos trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3cos trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3cos trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3cos trên đoạn [0; 2T] như sau:
b)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = 3cos = 3sin
• t = 0 thì x = 3sin = 3sin0 = 0
• t = thì x = 3sin = 3sin = 3;
• t = thì x = 3sin = 3sin = 0;
• t = thì x = 3sin = 3sin = -3;
• t = T thì x = 3sin = 3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T]:
Xét hàm số x = 3sin có chu kì là T.
Ta vẽ đồ thị hàm số x = 3sin trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số x = 3sin trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số x = 3sin trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà x = 3sin trên đoạn [0; 2T] như sau:
c)
‒ Với A = 3 cm và thay vào phương trình li độ x = Acos ta có:
x = 3cos = -3cos
= -3cos = -3sin
• t = 0 thì x = -3sin = -3sin0 = 0
• t = thì x = -3sin = -3sin = -3;
• t = thì x = -3sin = -3sin = 0;
• t = thì x = -3sin = -3sin = 3;
• t = T thì x = -3sin = -3sin2 = 0.
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà x = -3sin trên đoạn [0; 2T]:
Đồ thị hàm số x = -3sin là hình đối xứng với đồ thị hàm số x = 3sin qua trục hoành:
Lời giải:
Để ông đựng nước cách mặt nước 2m thì
Hay
Suy ra hoặc
*)
mà x0 nên
*)
Vì tập giá trị của hàm số sin là nên trong trường hợp này phương trình vô nghiệm.
Vậy một số giá trị của x để ống nước cách mặt nước 2m là
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 22 Toán 11 Tập 1: a) Cho hàm số f(x) = x2...
Luyện tập 1 trang 23 Toán 11 Tập 1: a) Chứng tỏ rằng hàm số g(x) = x3 là hàm số lẻ...
Hoạt động 2 trang 23 Toán 11 Tập 1: Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21...
Luyện tập 2 trang 23 Toán 11 Tập 1: Cho ví dụ về hàm số tuần hoàn...
Hoạt động 4 trang 24 Toán 11 Tập 1: Cho hàm số y = sinx...
Hoạt động 5 trang 25 Toán 11 Tập 1: Quan sát đồ thị hàm số y = sinx ở Hình 24...
Luyện tập 3 trang 25 Toán 11 Tập 1: Hàm số y = sinx đồng biến hay nghịch biến trên khoảng ?...
Hoạt động 7 trang 26 Toán 11 Tập 1: Cho hàm số y = cosx...
Hoạt động 8 trang 27 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cosx ở Hình 27...
Hoạt động 10 trang 28 Toán 11 Tập 1: Cho hàm số y = tanx...
Hoạt động 11 trang 28 Toán 11 Tập 1: Quan sát đồ thị hàm số y = tanx ở Hình 29...
Hoạt động 13 trang 29 Toán 11 Tập 1: Cho hàm số y = cotx....
Hoạt động 14 trang 30 Toán 11 Tập 1: Quan sát đồ thị hàm số y = cotx ở Hình 31...
Bài 1 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:...
Bài 2 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, tìm giá trị của x trên khoảng để:...
Bài 3 trang 31 Toán 11 Tập 1: Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:...
Bài 4 trang 31 Toán 11 Tập 1: Dùng đồ thị hàm số, hãy cho biết:...
Bài 5 trang 31 Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số:...
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Các phép biến đổi lượng giác
Bài 3: Hàm số lượng giác và đồ thị