Với giải Bài 31 trang 102 SBT Toán lớp 8 Cánh diều chi tiết trong Bài 7: Hình vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài 7: Hình vuông
Bài 31 trang 102 SBT Toán 8 Tập 1: Cho hình vuông có hai đường chéo và cắt nhau tại . Trên tia đối của tia lấy điểm sao cho . Từ điểm kẻ đường thẳng song song với cắt tia tại . Gọi là trung điểm của .
a) Chứng minh các tứ giác và đều là hình vuông.
b) Tứ giác có thể là hình vuông không? Vì sao?
Lời giải:
a) Tứ giác là hình vuông suy ra .
Ta có: (hai góc đồng vị) nên (hai góc so le trong) nên .
Từ đó ta chứng minh được tam giác vuông cân tại và tam giác vuông cân tại . Suy ra và .
(c.c.c). Suy ra ta tính được
Tứ giác có nên là hình chữ nhật.
Hình chữ nhật có nên là hình vuông.
Ta có: và nên .
Tứ giác có hai đường chéo và cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
Hình bình hành có nên là hình chữ nhật
Hình chữ nhật có nên là hình vuông
b) Tứ giác có nên không thể là hình vuông.
Xem thêm lời giải sách bài tập Toán lớp 8 Cánh diều hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 8 Cánh diều hay, chi tiết khác: