Với giải sách bài tập Toán 7 Bài 11: Định lí và chứng minh định lí sách Kết nối tri thức hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải SBT Bài 11: Định lí và chứng minh định lí
Giải SBT Toán 7 trang 46 Tập 1
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong tạo thành bằng nhau.
b)
Giả thiết: a // b; c cắt a tại A, c cắt b tại B, tạo thành một cặp góc so le trong .
Kết luận: .
a) Hãy chỉ ra giả thiết và kết luận của định lí.
b) Vẽ hình minh họa và ghi giả thiết, kết luận bằng kí hiệu.
Lời giải:
a) Giả thiết: Một đường thẳng cắt hai đường thẳng tạo thành cặp góc so le trong bằng nhau.
Kết luận: hai đường thẳng đó song song.
b)
Giả thiết: c cắt a tại A, c cắt b tại B, tạo thành cặp góc so le trong và
Kết luận: a // b.
Lời giải:
Giả thiết:
- Hai góc xOy; x’Oy’ là hai góc đối đỉnh.
- Ou là tia phân giác của góc xOy, Ou’ là tia đối của tia Ou.
Kết luận: Ou’ là tia phân giác của góc x’Oy’.
Chứng minh định lí:
Ta có:
và là hai góc đối đỉnh nên = .
và là hai góc đối đỉnh nên = .
Lại có: Ou là tia phân giác của nên = .
Suy ra: = .
Do đó, Ou’ là tia phân giác của .
Vậy Ou’ là tia phân giác của (điều phải chứng minh).
a) Hai góc cùng phụ với một góc thứ ba thì bằng nhau.
b) Hai góc cùng bù với một góc thứ ba thì bằng nhau.
Lời giải:
a)
Giả thiết:
;
Kết luận:
Chứng minh:
Ta có: suy ra, (1)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
b)
Giả thiết: ;.
Kết luận:
Chứng minh:
Ta có: suy ra, (3)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
Lời giải:
Vì Ou là tia phân giác của góc xOy nên . Hay
Vì Ov là tia phân giác của góc yOz nên . Hay
Ta có: .
Mà là góc vuông nên = 90o.
Do đó, (1)
Mà có cạnh chung là Oy (2)
Từ (1) và (2) suy ra là hai góc kề bù.
Lời giải:
Giả thiết: a // b, c cắt a.
Kết luận: c cắt b.
Chứng minh: Giả sử c cắt a tại một điểm A. Nếu c không cắt b thì c song óng với b nên qua điểm A có hai đường thẳng a và c cùng song song với đường thẳng b do đó, theo tiên đề Euclid, c phải trùng với a. Nhưng theo giả thiết, c khác a vì c cắt a, vậy không thể có c không cắt b.
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song
Bài 11: Định lí và chứng minh định lí
Bài 12: Tổng các góc trong một tam giác
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Lý thuyết Định lí và chứng minh định lí
1. Định lí. Giả thiết và kết luận của định lí
• Định lí là một khẳng định được suy ra từ những khẳng định đúng đã biết. Mỗi định lí thường được phát biểu dưới dạng:
Nếu … thì …
+ Phần giữa từ “nếu” và từ “thì” là giả thiết của định lí.
+ Phần sau từ “thì” là kết luận của định lí.
Giả thiết, kết luận viết tắt tương ứng là GT và KL.
Ví dụ:
+ Định lí “Nếu hai góc đối đỉnh thì hai góc đó bằng nhau” được suy ra từ khẳng định đúng là “hai góc kề bù có tổng số đo bằng 180°).
Giả thiết là: hai góc đối đỉnh
Kết luận là: hai góc đó bằng nhau.
Ta viết giả thiết và kết luận của định lý trên bằng kí hiệu như sau:
GT |
và đối đỉnh |
KL |
= |
2. Chứng minh định lí
• Chứng minh một định lí là dùng lập luận để từ giả thiết và những khẳng định đúng đã biết suy ra kết luận của định lí.
Ví dụ:
+ Chứng minh định lí: “Nếu hai góc đối đỉnh thì hai góc đó bằng nhau” như sau:
GT |
và đối đỉnh |
KL |
= |
Ta có: + = 180° (hai góc kề bù)
= 180° − (1)
Lại có: + = 180° (hai góc kề bù)
= 180° − (2)
Từ (1) và (2) = (đpcm)