Với giải Bài 4 trang 39 Toán lớp 10 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 2 học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài tập cuối chương 2
Bài 4 trang 39 Toán lớp 10: Một công ty cần mua các tủ đựng hồ sơ. Có hai loại tủ: Tủ loại A chiếm 3 sàn, loại này có sức chứa 12 và có giá 7,5 triệu đồng; tủ loại B chiếm 6 sàn, loại này có sức chứa 18 và có giá 5 triệu. Cho biết công ty chỉ thu xếp được nhiều nhất là 60 mặt bằng cho chỗ đựng hồ sơ và ngân sách mua tủ không quá 60 triệu đồng. Hãy lập kế hoạch mua sắm để công ty có được thể tích đựng hồ sơ lớn nhất.
Lời giải:
Gọi x, y lần lượt là số tủ loại A, loại B mà công ty cần mua.
Ta có các điều kiện ràng buộc đối với x, y như sau:
- Hiển nhiên x ≥ 0 , y ≥ 0
- Mặt bằng nhiều nhất là 60 nên
- Ngân sách mua tủ không quá 60 triệu đồng nên
Từ đó ta có hệ bất phương trình:
Biểu diễn từng miền nghiệm của mỗi bất phương trình trên hệ trục tọa độ Oxy.
Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.
Với các đỉnh
Gọi F là số tiền lãi (đơn vị: triệu đồng) thu về, ta có:
Tính giá trị của F tại các đỉnh của tứ giác:
Tại
Tại
Tại
Tại
F đạt giá trị lớn nhất bằng tại
Vậy công ty đó nên mua 2 tủ loại A và 9 tủ loại B để thể tích đựng hồ sơ là lớn nhất.
Bài tập vận dụng:
Bài 1. Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) 3x + 5y ‒ 1 < 0
b) 2x2 – y2 ‒ 1 > 0
c) 4y2 – 3 > 0
d) 4x – 5y < 1
e) 2x – 5y – 6 ‒ 6t ≥ 0
Hướng dẫn giải
Ta có: 3x + 5y ‒ 1 < 0 có dạng ax + by + c < 0 với a = 3, b = 5 và c = ‒ 1. Do đó bất phương trình a) là bất phương trình bậc nhất hai ẩn.
Ta có: 2x2 – y ‒ 1 > 0 có chứa x2 nên bất phương trình b) không là bất phương trình bậc nhất hai ẩn.
Ta có: 4y2 – 3 ≤ 0 có chứa ẩn y2 nên bất phương trình c) không là bất phương trình bậc nhất hai ẩn.
Ta có 4x – 5y < 1 ⇔ 4x – 5y ‒ 1 < 0 có dạng ax + by + c < 0 với a = 4, b = ‒ 5 và c = ‒ 1. Do đó bất phương trình d) là bất phương trình bậc nhất hai ẩn.
Ta có 2x – 5y ‒ 6t ≥ 0 là bất phương trình bậc nhất ba ẩn x, y, t. Do đó bất phương trình e) không là bất phương trình bậc nhất hai ẩn.
Vậy 3x + 5y ‒ 1 < 0; 4x – 5y < 1 là các bất phương trình bậc nhất hai ẩn.
Bài 2. Bất phương trình sau có phải là bất phương trình bậc nhất hai ẩn không? Nếu có biểu diễn miền nghiệm của nó trên trục tọa độ Oxy: 2x + y – 1 ≤ 0?
Hướng dẫn giải
Bất phương trình 2x + y – 1 ≤ 0 là bất phương trình bậc nhất hai ẩn vì có dạng ax + by + c ≤ 0 với a = 2, b = 1 và c = ‒ 1.
- Biểu diễn miền nghiệm trên trục tọa độ Oxy:
+ Vẽ đường thẳng ∆: 2x + y – 1 = 0 trên mặt phẳng tọa độ Oxy.
+ Lấy điểm O(0;0) không thuộc ∆ thay vào bất phương trình ta có: 2.0 + 0 ‒ 1 = ‒1 ≤ 0 là một mệnh đề đúng.
Vậy miền nghiệm của bất phương trình đã cho trên trục tọa độ Oxy là nửa mặt phẳng bờ ∆ (kể cả bờ ∆) chứa gốc tọa độ O.
Miền nghiệm biểu diễn trên trục tọa độ Oxy:
Bài 3. Cho hệ bất phương trình . Hỏi đây có phải hệ bất phương trình bậc nhất hai ẩn không? Khi cho y = 0, x có thể nhận các giá trị nguyên nào?
Hướng dẫn giải
là hệ bất phương trình bậc nhất hai ẩn bởi vì có hai bất phương trình x + 2y < 1 và x – 3y ≥ 0 là bất phương trình bậc nhất 2 ẩn.
Khi y = 0, hệ trở thành: ⇔ 0 ≤ x < 1
Mà x nguyên nên x = 0.
Vậy x = 0 thoả mãn yêu cầu đề bài.
Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Hệ bất phương trình bậc nhất hai ẩn