Khám phá 3 trang 14 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

703

Với giải Khám phá 3 trang 14 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2:Các phép toán với đa thức nhiều biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Các phép toán với đa thức nhiều biến

Video bài giải Toán 8 Bài 2: Các phép toán với đa thức nhiều biến - Chân trời sáng tạo

Khám phá 3 trang 14 Toán 8 Tập 1: a) Hình 3a là bản vẽ sơ lược sàn của một căn hộ (các kích thước tính theo m). Tính diện tích sàn này bằng những cách khác nhau.

b) Nếu vẽ cả ban công thì được sơ đồ như Hình 3b. Hãy tính tổng diện tích của sàn bao gồm cả ban công.

Khám phá 3 trang 14 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Cách 1: Chia sàn căn hộ thành ba hình chữ nhật ABCD, BCEG, EGHK (hình vẽ dưới đây), khi đó diện tích sàn căn hộ là tổng diện tích các hình chữ nhật trên.

Khám phá 3 trang 14 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

Diện tích hình chữ nhật ABCD là: 2xy (m2).

Diện tích hình chữ nhật BCEG là: 2x.3x = 6x2 (m2).

Diện tích hình chữ nhật EGHK là: 2x.2 = 4x (m2).

Diện tích sàn của căn hộ là: 2xy + 6x2 + 4x (m2).

Cách 2: Tính chiều dài của sàn căn hộ rồi tính diện tích sàn căn hộ.

Chiều dài sàn của căn hộ là: y + 3x + 2 (m).

Diện tích sàn của căn hộ là: 2x.(y + 3x + 2) (m2).

Lưu ý: Ngoài 2 cách trên, có thể dùng cách khác để tính diện tích sàn của căn hộ.

b) Chiều rộng sàn của căn hộ (bao gồm cả ban công) là: 2x + 1 (m).

Diện tích sàn của căn hộ (bao gồm cả ban công) là: (2x + 1).(y + 3x + 2) (m2).

Lý thuyết Nhân hai đa thức

2.1. Nhân hai đơn thức

Để nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các lũy thừa cùng biến, rồi nhân các kết quả đó với nhau.

Ví dụ 2. Thực hiện các phép nhân đơn thức sau:

Các phép toán với đa thức nhiều biến (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

Hướng dẫn giải

Các phép toán với đa thức nhiều biến (Lý thuyết Toán lớp 8) | Chân trời sáng tạo

2.2. Nhân hai đa thức

– Để nhân đơn thức với đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức, rồi cộng các kết quả với nhau.

–Để nhân hai đa thức, ta nhân từng hạng tử của đa thức này với đa thức kia, rồi cộng các kết quả với nhau.

Ví dụ 3. Thực hiện các phép tính nhân:

a) 3x(x3 + 2xy2);

b) (2x2y + y) . (–5x2y2 + y2).

Hướng dẫn giải

a) 3x(x3 + 2xy2) = 3x . x3 + 3x . 2xy2

= 3(x . x3) + (3 . 2)(x . x) . y2

= 3x4 + 6x2y2.

b) (2x2y + y) . (–5x2y2 + y2) = 2x2y(–5x2y2 + y2) + y(–5x2y2 + y2)

= 2x2y . (–5x2y2) + 2x2y . y2 + y . (–5x2y2) + y . y2

= [2. (–5)] . (x2 . x2) . (y . y2) + 2x2 (y . y2) – 5x2 . (y . y2) + y3

= –10x5y3 + 2x2y3 – 5x2y3 + y3

= –10x5y3 – 3x2y3 + y3.

Đánh giá

0

0 đánh giá