Khám phá 1 trang 12 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

366

Với giải Khám phá 1 trang 12 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2:Các phép toán với đa thức nhiều biến giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 2: Các phép toán với đa thức nhiều biến

Video bài giải Toán 8 Bài 2: Các phép toán với đa thức nhiều biến - Chân trời sáng tạo

Khám phá 1 trang 12 Toán 8 Tập 1: Tại một công trình xây dựng, người ta dùng ba loại tấm kính chống nắng A, B và C với kích thước như Hình 1 (tính bằng m). Giá tiền các tấm kính được tính theo diện tích với đơn giá a đồng/m2. Tại đây có hai lần nhập vật liệu như bảng sau:

Khám phá 1 trang 12 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) Tính tổng số tiền mua kính của cả hai lần.

b) Số tiền lần 2 nhiều hơn lần 1 bao nhiêu?

Lời giải:

a) Giá tiền của tấm kính chống nắng loại A là: a.SA = a.(x.x) = ax2 (đồng).

Giá tiền của tấm kính chống nắng loại B là: a.SB = a.(x.1) = ax (đồng).

Giá tiền của tấm kính chống nắng loại C là: a.SC = a.(x.y) = axy (đồng).

Số tiền mua kính của lần 1 là: 2ax2 + 4ax + 5axy (đồng).

Số tiền mua kính của lần 2 là: 4ax2 + 3ax + 6axy (đồng).

Tổng số tiền mua kính của cả hai lần là:

(2ax2 + 4ax + 5axy) + (4ax2 + 3ax + 6axy)

= 2ax2 + 4ax + 5axy + 4ax2 + 3ax + 6axy

= (2ax2 + 4ax2) + (4ax + 3ax) + (5axy + 6axy)

= 6ax2 + 7ax + 11axy (đồng).

b) Số tiền lần 2 nhiều hơn lần 1 là:

(2ax2 + 4ax + 5axy) – (4ax2 + 3ax + 6axy)

= 2ax2 + 4ax + 5axy – 4ax2 – 3ax – 6axy

= (2ax2 – 4ax2) + (4ax – 3ax) + (5axy – 6axy)

= –2ax2 + ax – axy (đồng).

 Lý thuyết Cộng, trừ hai đa thức

Muốn cộng, trừ hai đa thức ta làm như sau:

– Viết hai đa thức trong ngoặc và nối với nhau bằng dấu cộng “+” hay trừ “–”.

– Bỏ dấu ngoặc rồi thu gọn đa thức thu được.

Ví dụ 1. Cho hai đa thức A = x2 + 2y – 3xy và B = x – 8y + x2y + 21xy . Tính A – B và A + B.

Hướng dẫn giải

Ta có:

A – B = x2 + 2y – 3xy – (x – 8y + x2y + 21xy)

= x2 + 2y – 3xy – x + 8y – x2y – 21xy

= x2 + (2y + 8y) + (–3xy – 21xy) – x – x2y

= x2 + 10y – 24xy – x – x2y.

A + B = x2 + 2y – 3xy + x – 8y + x2y + 21xy

= x2 + (2y – 8y) + (–3xy + 21xy) + x + x2y

= x2 – 6y + 18xy + x + x2y.

Đánh giá

0

0 đánh giá