Bài 2 trang 107 Toán 7 Tập 2 | Cánh diều Giải toán lớp 7

1.2 K

Với giải Bài 2 trang 107 Toán lớp 7 Cánh diều chi tiết trong Bài 10: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:

Giải bài tập Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác

Bài 2 trang 107 Toán 7 Tập 2: Cho tam giác ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G. Chứng minh:

a) BM = CN;

b) GBC cân tại G.

Lời giải:

GT

ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G

KL

a) BM = CN;

b) GBC cân tại G.

Chứng minh (Hình vẽ dưới đây):

Giải Toán 7 Bài 10 (Cánh diều): Tính chất ba đường trung tuyến của tam giác (ảnh 1) 

a) Tam giác ABC cân tại A (giả thiết) nên AB = AC (1).

Do BM đường trung tuyến của tam giác ABC nên M là trung điểm của AC do đó AM=MC=12AC  (2)

CN là đường trung tuyến của tam giác ABC nên N là trung điểm của AB do đó AN=NB=12AB  (3)

Từ (1), (2) và (3) ta có: AM = AN.

Xét ABM và ACN có:

AM = AN (chứng minh trên).

A^ là góc chung,

AB = AC (chứng minh trên)

Do đó ABM = ACN (c.g.c)

Suy ra BM = CN (2 cạnh tương ứng).

Vậy BM = CN.

b) Tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G nên G là trọng tâm của tam giác ABC.

Suy ra BG = 23BM; CG = 23CN (tính chất trọng tâm của tam giác).

Mà BM = CN (chứng minh câu a)

Do đó BG = CG.

Tam giác GBC có BG = CG nên tam giác GBC cân tại G.

Vậy GBC cân tại G.

Đánh giá

0

0 đánh giá