Với giải Vở bài tập Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác sách Cánh diều hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong VBT Toán 7. Mời các bạn đón xem:
Giải VBT Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
I. Kiến thức trọng tâm
Câu 1 trang 105 vở bài tập Toán lớp 7 Tập 2:
Trong tam giác ABC (Hình 74), đoạn thẳng AM nối……………với…………..của cạnh BC được goi là đường trung tuyến (xuất phát từ đỉnh A hoặc tương ứng với cạnh BC)
Lời giải:
Trong tam giác ABC (Hình 74), đoạn thẳng AM nối đỉnh A với trung điểm của cạnh BC được goi là đường trung tuyến (xuất phát từ đỉnh A hoặc tương ứng với cạnh BC).
Câu 2 trang 105 vở bài tập Toán lớp 7 Tập 2:
- Ba đường trung tuyến cùng đi qua ………….. Điểm đó được gọi là …………của tam giác
- Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng …….... độ dài đường trung tuyến đi qua đỉnh ấy.
- Trọng tâm của tam giác ABC, với AM là đường trung tuyến và G là trọng tâm (Hình 75) ta có:
, .
Lời giải:
- Ba đường trung tuyến cùng đi qua một điểm. Điểm đó được gọi là trọng tâm của tam giác
- Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng độ dài đường trung tuyến đi qua đỉnh ấy.
- Trọng tâm của tam giác ABC, với AM là đường trung tuyến và G là trọng tâm (Hình 75) ta có:
, .
II. Luyện tập
Lời giải:
- Đoạn thẳng HK là đường trung tuyến của tam giác HBC vì H là một đỉnh của tam giác HBC và K là trung điểm của cạnh BC.
- Đoạn thẳng HK cũng là đường trung tuyến của tam giác AKC vì K là một đỉnh của tam giác AKC và H là trung điểm của cạnh AC.
Lời giải:
Hai đường trung tuyến QM và RK cắt nhau tại G nên G là trọng tâm của tam giác PQR. Suy ra điểm G thuộc đường trung tuyến PI của tam giác PQR. Vậy ba điểm P, G, I thẳng hàng.
III. Bài tập
Lời giải:
Vì G là trọng tâm tam giác ABC nên GA = AM, GB = BN, GC = CP.
Suy ra GA + GB + GC = AM + BN + PC = (AM + BN + CP).
Vậy GA + GB + GC = (AM + BN + CP).
a) BM = CN;
b) ∆GBC cân tại G.
Lời giải:
a) Vì M, N lần lượt là trung điểm của AC và AB nên AM = AC, AN = AB.
Mà tam giác ABC cân tại A nên AB = AC, suy ra AM = AN.
Xét hai tam giác ABM và ACN, ta có:
AB = AC, là góc chung, AM = AN (chứng minh trên).
Suy ra ∆ABM = ∆ACN (c.g.c)
Do đó BM = CN (hai cạnh tương ứng).
b) Vì G là trọng tâm và BM, CN là các đường trung tuyến của tam giác ABC nên GB = BM, GC = CN. Mà BM = CN (chứng minh trên), suy ra GB = GC
Do đó ∆GBC cân tại G
a) GA = GD;
b) ∆MBG = ∆MCD;
c) CD = 2GN.
Lời giải:
a) Do G là trọng tâm tam giác ABC nên GA = 2MG.
Do M nằm giữa G và D và MD = MG nên GD = 2MG.
Từ đó suy ra GA = GD.
b) Xét hai tam giác MBG và MCD, ta có:
MB = MC (giả thiết);
= (hai góc đối đỉnh);
MG = MD (giả thiết).
Suy ra ∆MBG = ∆MCD (c.g.c).
c) Vì ∆MBG = ∆MCD nên BG = CD (hai cạnh tương ứng).
Vì G là trọng tâm tam giác ABC nên BG = 2GN.
Từ đó suy ra CD = 2GN.
a) ∆AHB = ∆AHM;
b) AG = AB.
Lời giải:
a) Xét hai tam giác vuông AHB và AHM, ta có:
AH là cạnh chung;
HB = HM (giả thiết);
Suy ra ∆AHB = ∆AHM (hai cạnh góc vuông).
b) Vì ∆AHB = ∆AHM nên AB = AM (1)
Vì hai đường trung tuyến AM và BN cắt nhau tại G nên G là trọng tâm tam giác ABC, suy ra AG = AM (2)
Từ (1) và (2) suy ra AG = AB.
a) AH có vuông góc với BC không? Vì sao?
b) Vị trí O ở độ cao bao nhiêu mét so với mặt đất.
Lời giải:
a) Ta có AB = AC (tính chất tam giác cân), suy ra điểm A thuộc đường trung trực của đoạn thẳng BC.
HB = HC (giả thiết), suy ra điểm H thuộc đường trung trực của đoạn thẳng BC.
Do đó AH là đường trung trực của đoạn thẳng BC. Vậy AH ⊥ BC.
b) Vì O là trọng tâm tam giác ABC nên HO = AH = 0,4 m
Điểm O ở độ cao so với mặt đất là 3.3,3 + 0,4 = 10,3 m