Với giải Bài 1 trang 107 Toán lớp 7 Cánh diều chi tiết trong Bài 10: Tính chất ba đường trung tuyến của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 1 trang 107 Toán 7 Tập 2: Cho tam giác ABC. Ba đường trung tuyến AM, BN, CP đồng quy tại G. Chứng minh:
GA + GB + GC = (AM + BN + CP).
Lời giải:
GT |
DABC, ba đường trung tuyến AM, BN, CP đồng quy tại G |
KL |
GA + GB + GC = (AM + BN + CP). |
Chứng minh (Hình vẽ dưới đây):
Tam giác ABC có ba đường trung tuyến AM, BN, CP đồng quy tại G nên G là trọng tâm của tam giác ABC.
Khi đó AG = AM; BG = BN; CG = CP (tính chất trọng tâm của tam giác)
Do đó GA + GB + GC = AM + BN + CP = (AM + BN + CP).
Vậy GA + GB + GC = (AM + BN + CP).
Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:
Giải SGK Toán 7 Bài 9: Đường trung trực của một đoạn thẳng
Giải SGK Toán 7 Bài 10: Tính chất ba đường trung tuyến của tam giác
Giải SGK Toán 7 Bài 11: Tính chất ba đường phân giác của tam giác
Giải SGK Toán 7 Bài 12: Tính chất ba đường trung trực của tam giác