Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B đồng thời cách đều A và C

2.1 K

Với giải Bài 45 trang 82 SBT Toán lớp 10 Cánh diều chi tiết trong Bài 4: Vị trí tương đối của góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Giải SBT Toán lớp 10 Bài 4: Vị trí tương đối của góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 45 trang 82 SBT Toán 10 Tập 2: Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B đồng thời cách đều A và C?

Lời giải:

Δ cách đều A và C khi và chỉ khi ∆ đi qua trung điểm của AC hoặc ∆ song song với AC.

TH1: ∆ là đi qua trung điểm của AC

Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B

Gọi M là trung điểm của đoạn thẳng AB nên tọa độ điểm M là M(2; 3).

Vectơ chỉ phương của đường thẳng ∆ là: MB=(2;-1)

Suy ra vectơ pháp tuyến của đường thẳng ∆ là: n=(1;2)

Do đó phương trình đường thẳng ∆ là: x – 2 + 2(y – 3) = 0 ⇔ x + 2y – 8 = 0

TH2: ∆ song song với AC.

Cho ba điểm A(- 2; 2), B(4; 2), C(6; 4). Viết phương trình đường thẳng ∆ đi qua B

Vectơ chỉ phương của đường thẳng ∆ là: AC=(8;2) nên vectơ pháp tuyến của đường thẳng ∆ là: n=(1;-4)

Phương trình đường thẳng ∆ là: x – 4 – 4(y – 2) = 0 ⇔ x – 4y + 4 = 0.

Từ khóa :
toán 10
Đánh giá

0

0 đánh giá