Cho ∆1 và ∆2. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là

645

Với giải Bài 38 trang 82 SBT Toán lớp 10 Cánh diều chi tiết trong Bài 4: Vị trí tương đối của góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 10. Mời các bạn đón xem: 

Giải SBT Toán lớp 10 Bài 4: Vị trí tương đối của góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng

Bài 38 trang 82 SBT Toán 10 Tập 2: Cho Δ1:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'  2:Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:

A. 300;

B. 450;

C. 900;

D. 600.

Lời giải:

Ta thấy vectơ chỉ phương của ∆1 là: u1=(3;-1)

Vectơ chỉ phương của ∆2 là: u2=(3;1)

Ta có: cos(u1,u2) = Cho ∆1  x = -2+(căn3)t; y = 1-t và ∆2 x = -1+(căn3)t'; y = 2+t'

Suy ra góc giữa 2 đường thẳng chính là góc nhọn giữa 2 vectơ chỉ phương của 2 đường thẳng đó.

Do đó Δ1,Δ2=u1,u2=60o

Vậy chọn đáp án D.

Từ khóa :
toán 10
Đánh giá

0

0 đánh giá