Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 10 Bài 12: Số gần đúng và sai số chi tiết sách Toán 10 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10. Mời các bạn đón xem:
Trong các số được đưa ra ở tình huống mở đầu, số nào gần nhất với số được công bố ở trên?
Lấy 8 848,86 trừ đi các số xuất hiện ở tình huống mở đầu và so sánh các giá trị tuyệt đối của các hiệu vừa tìm được.
Trong các số 0,86; 0,73; 4,43; 1,14 thì số 0,73 là số nhỏ nhất.
Do đó trong các số 8 848 m; 8 848,13 m; 8 844,43 m; 8 850 m thì số ; 8 848,13 m là số gần nhất với số được công bố ngày 8-12-2020.
Giá trị tuyệt đối |a-b| càng nhỏ thì a và b càng gần nhau.
Trang và Hoà thực hiện đo thể tích một cốc nước bằng hai ống đồng có vạch chia được kết quả như Hình 5.1.
Hãy cho biết số đo thể tích trên mỗi ống.
Đọc các số xuất hiện tại vạch nước ở mỗi ống.
Giả sử ống nước thứ nhất là trang đo và ống nước thứ hai là Hòa đo.
Với ống thứ hai thì có vạch chia nhỏ hơn.
Hãy lấy một ví dụ về số gần đúng.
Số gần đúng là số mà ta khó có thể biết được giá trị chính xác của nó mà chỉ tìm được giá trị xấp xỉ của nó mà thôi.
Trong HĐ2, Hòa dùng kính lúp để quan sát mực nước trên ống đo thứ hai được hình ảnh như Hình 5.2. Kí hiệu () là số đo thể tích của nước.
Công ty (trong Ví dụ 2) cũng sử dụng dây chuyền B để đóng gạo với khối lượng chính
xác là 20 kg. Trên bao bì ghi thông tin khối lượng là kg.
Khẳng định “Dây chuyền A tốt hơn dây chuyền B" là đúng hay sai?
Lời giải:
Mặc dù độ chính xác của khối lượng bao gạo đóng bằng dây chuyền A nhỏ hơn nhưng do bao gạo đóng bằng dây chuyền B nặng hơn nhiều nên ta không dựa vào sai số tuyệt đối để so sánh.
Do đó câu hỏi này ta chưa thể trả lời chính xác được nếu chỉ dựa vào các kiến thức đã học trước đó.
Xem thêm bài Luyện tập 3 trang 76 Sách giáo khoa Toán 10 – Kết nối tri thức với cuộc sống.
Giải Toán 10 trang 76 Tập 1 Kết nối tri thức
Luyện tập 3 trang 76 Toán lớp 10: Đánh giá sai số tương đối của khối lượng bao gạo được đóng gói theo hai dây chuyền A, B ở Ví dụ 2 và HĐ4. Dựa trên tiêu chí này, dây chuyền nào tốt hơn?
Phương pháp giải:
- Đánh giá sai số tương đối:
Với d là độ chính xác và a là số gần đúng.
- Nhận xét dây chuyền nào tốt hơn: càng nhỏ thì chất lượng phép đo hay tính toán càng cao.
Lời giải:
Xét dây chuyền A: ta có d=0,2; a=5.
Xét dây chuyền B: ta có d=0,5; a=20
Ta thấy nên dây chuyền B tốt hơn.
Chú ý
Có thể không cần đổi sang đơn vị phần trăm (%) để so sánh.
3. Quy tròn số gần đúng
Giải Toán 10 trang 77 Tập 1 Kết nối tri thức
Luyện tập 4 trang 77 Toán lớp 10: Hãy viết số quy tròn của số gần đúng trong những trường hợp sau:
a)
b)
Phương pháp giải:
Bước 1: Xác định hàng làm tròn.
Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ
làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà ở nhỏ hơn 1 đơn vị của hàng đó.
Bước 2: Làm tròn:
Đối với chữ số hàng làm tròn:
- Giữ nguyên nểu chữ số ngay bên phải nó nhỏ hơn 5;
- Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn
hoặc bằng 5.
Đối với chữ số sau hàng làm tròn:
- Bỏ đi nếu ở phần thập phân;
- Thay bởi các chữ số 0 nếu ở phần số nguyên.
Lời giải:
a)
Bước 1:
Vì độ chính xác đến hàng trăm (d=300) nên hàng làm tròn là hàng nghìn. Chữ số hàng làm tròn là 1.
Bước 2:
Vì số bên phải số 1 là số 9>5 nên ta tăng số 1 thêm 1 đơn vị.
Vậy số quy tròn của là
b)
Vì độ chính xác đến hàng phần trăm (d=0,01) nên hàng làm tròn là hàng phần chục. Chữ số hàng làm tròn là 2.
Vì số bên phải số 2 là số 8>5 nên ta tăng 2 thêm 1 đơn vị và bỏ các số sau số 2.
Vậy số quy tròn của là .
Vận dụng trang 77 Toán lớp 10: Các nhà vật lí sử dụng hai phương pháp khác nhau để đo tuổi của vũ trụ (đơn vị tỉ năm) lần lượt cho hai kết quả là: 13,807 0,026 và 13,799 0,021.
Hãy đánh giá sai số tương đối của mối phương pháp. Căn cứ trên tiêu chí này, phương pháp nào cho kết quả chính xác hơn?
Phương pháp giải:
- Đánh giá sai số tương đối:
Với d là độ chính xác và a là số gần đúng.
- Nhận xét phương pháp nào cho kết quả chính xác hơn: càng nhỏ thì chất lượng phép đo hay tính toán càng cao.
Lời giải:
Xét phương pháp 1: ta có d=0,026(tỉ năm); a=13,807 (tỉ năm)
Xét phương pháp 2: ta có d=0,021(tỉ năm); a=13,799 (tỉ năm)
Ta thấy nên phương pháp 2 cho kết quả chính xác hơn.
Bài tập
Bài 5.1 trang 77 Toán lớp 10: Trong các số sau, những số nào là số gần đúng?
a) Cân một túi gạo cho kết quả là 10,2kg
b) Bán kính Trái Đất là 6 371 km.
c) Trái Đất quay một vòng quanh Mặt Trời mất 365 ngày.
Phương pháp giải:
Các con số thu thập được nhờ đo đạc đều là các số gần đúng.
Lời giải:
a) Khi cân một túi gạo thì ta kết quả là một số gần đúng vì đây là một cách đo đạc.
b) Ta không biết chính xác bán kính Trái Đất nên 6 371 cũng là số gần đúng.
c) Trái Đất quay một vòng quanh Mặt Trời mất 365 ngày cũng là số gần đúng.
Bài 5.2 trang 77 Toán lớp 10: Giải thích kết quả “Đo độ cao của một ngọn núi cho kết quả là 1 235 +5 m” và thực hiện làm tròn số gần đúng.
Phương pháp giải:
- Giải thích: Chỉ ra số độ cao gần đúng và độ chính xác
- Làm tròn số gần đúng:
Bước 1: Xác định hàng làm tròn.
Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ
làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà ở nhỏ hơn 1 đơn vị của hàng đó.
Bước 2: Làm tròn:
Đối với chữ số hàng làm tròn:
- Giữ nguyên nểu chữ số ngay bên phải nó nhỏ hơn 5;
- Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn
hoặc bằng 5.
Đối với chữ số sau hàng làm tròn:
- Bỏ đi nếu ở phần thập phân;
- Thay bởi các chữ số 0 nếu ở phần số nguyên.
Lời giải:
- Giải thích: “Đo độ cao của một ngọn núi cho kết quả là 1 235 5 m” có nghĩa là
Độ cao của ngọn núi gần với 1235m và độ chính xác là 5m
Bài 5.3 trang 77 Toán lớp 10: Sử dụng máy tính cầm tay tìm số gần đúng cho với độ chính xác 0.0005.
Phương pháp giải:
Làm tròn số gần đúng:
Bước 1: Xác định hàng làm tròn.
Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà ở nhỏ hơn 1 đơn vị của hàng đó.
Bước 2: Làm tròn:
Đối với chữ số hàng làm tròn:
- Giữ nguyên nểu chữ số ngay bên phải nó nhỏ hơn 5;
- Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn
hoặc bằng 5.
Đối với chữ số sau hàng làm tròn:
- Bỏ đi nếu ở phần thập phân;
- Thay bởi các chữ số 0 nếu ở phần số nguyên.
Lời giải:
Ta được
Ta chọn số gần đúng là 1,912931183.
Độ chính xác d=0.0005 nên ta có hàng làm tròn là hàng phần nghìn.
Số ở hàng phần nghìn là số 2, số bên phải là số 9>5 nên ta tăng 2 thêm 1 đơn vị và được số quy tròn của 1,912931183 là 1,913
Bài 5.4 trang 77 Toán lớp 10: Các nhà vật lí sử dụng ba phương pháp đo hằng số Hubble lần lượt cho kết quả như sau:
67,31 0,96;
67,90 0,55;
67,74 0,46.
Phương pháp nào chính xác nhất tính theo sai số tương đối?
Phương pháp giải:
Đánh giá sai số tương đối của 3 phương pháp.
- Đánh giá sai số tương đối:
Với d là độ chính xác và a là số gần đúng.
- Nhận xét phương pháp nào cho kết quả chính xác hơn: càng nhỏ thì chất lượng phép đo hay tính toán càng cao.
Lời giải:
Phương pháp 1: 67,31 0,96
Sai số tương đối
Phương pháp 2: 67,90 0,55
Sai số tương đối
Phương pháp 1: 67,74 0,46
Sai số tương đối
Ta thấy
=> phương pháp 3 có chính xác nhất.
Bài 5.5 trang 77 Toán lớp 10: An và Bình cùng tính chu vi của hình tròn bán kính 2 cm với hai kết quả như sau:
Kết quả của An: cm;
Kết quả của Bình: cm.
Hỏi:
a) Hai giá trị tính được có phải là các số gần đúng không?
b) Giá trị nào chính xác hơn?
Phương pháp giải:
a) Chu vi của đường tròn luôn là số gần đúng.
b) Đánh giá sai số tuyệt đối
Lời giải:
a) Vì công thức chu vi đường tròn là với R là độ dài bán kính, trong đó là số không thể tính chính xác được mà chỉ có thể lấy số gần đúng nên hai giá trị tính được là số gần đúng.
b)
Kết quả của An: cm:
Kết quả của Bình: cm.
Ta thấy
=> Kết quả của An chính xác hơn.
Bài 5.6 trang 77 Toán lớp 10: Làm tròn số 8 316,4 đến hàng chục và 9,754 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn.
Phương pháp giải:
* Làm tròn số gần đúng:
Bước 1: Xác định hàng làm tròn.
Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà ở nhỏ hơn 1 đơn vị của hàng đó.
Bước 2: Làm tròn:
Đối với chữ số hàng làm tròn:
- Giữ nguyên nểu chữ số ngay bên phải nó nhỏ hơn 5;
- Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn
hoặc bằng 5.
Đối với chữ số sau hàng làm tròn:
- Bỏ đi nếu ở phần thập phân;
- Thay bởi các chữ số 0 nếu ở phần số nguyên.
* Tính sai số tuyệt đối của số quy tròn.
Lời giải:
- Làm tròn số 8 316,4 đến hàng chục
Số làm tròn là số 1, số bên phải số 1 là số 6>5
=> Tăng thêm 1 đơn vị
=> Số quy tròn là: 8 320
Sai số tuyệt đối:
- Làm tròn số 9,754 đến hàng phần trăm
Số làm tròn là số 5, số bên phải số 5 là số 4<5
=> Giữ nguyên 5 và bỏ các số bên phải đi.
=> Số quy tròn là: 9,75
Sai số tuyệt đối:
Lý thuyết Số gần đúng và sai số
1. Số gần đúng
Trong nhiều trường hợp, ta không biết hoặc khó biết số đúng (kí hiệu là ) mà chỉ tìm được giá trị xấp xỉ nó. Giá trị này được gọi là số gần đúng, kí hiệu là a.
Chú ý:
Ta có thể sử dụng máy tính cầm tay để tìm giá trị gần đúng của các biểu thức chứa các số vô tỉ như π, ,...
Ví dụ:
+ Hình tròn có bán kính R = 2cm.
Chu vi của hình tròn là 2.π.2 = 4π ≈ 12,57 (cm).
Vậy 4π là số đúng; 12,57 là số gần đúng của chu vi hình tròn.
+ Ta có .
Vậy là số đúng; 1,44 là số gần đúng.
2. Sai số tuyệt đối và sai số tương đối
a) Sai số tuyệt đối
Giá trị phản ánh mức độ sai lệch giữa số đúng và số gần đúng a, được gọi là sai số tuyệt đối của số gần đúng a.
Ví dụ:
Ta có: .
Suy ra là số đúng; a = 5357 là số gần đúng.
Khi đó ta có: .
Vậy ∆a = 0,034 là sai số tuyệt đối của số gần đúng a = 5357.
Chú ý:
+ Trên thực tế, nhiều khi ta không biết nên cũng không biết ∆a. Tuy nhiên, ta có thể đánh giá được ∆a không vượt quá một số dương d nào đó.
+ Nếu ∆a ≤ d thì a – d ≤ ≤ a + d, khi đó ta viết = a ± d và hiểu là số đúng nằm trong đoạn [a – d; a + d]. Do đó d càng nhỏ thì a càng gần nên d được gọi là độ chính xác của số gần đúng.
+ Trong các phép đo, độ chính xác d của số gần đúng bằng một nửa đơn vị của thước đo. Chẳng hạn, một thước đo có chia vạch đến xentimét thì mọi giá trị đo nằm giữa 6,5cm và 7,5cm đều được coi là 7cm. Vì vậy, thước đo có thang đo càng nhỏ thì cho giá trị đo càng chính xác.
Ví dụ: Trên hộp bánh có ghi khối lượng tịnh là 500g ± 5g.
+ Khối lượng thực tế của hộp bánh là số đúng. Tuy không biết nhưng ta xem khối lượng hộp bánh là 500g nên 500 là số gần đúng cho . Độ chính xác d = 5 (g).
+ Giá trị của nằm trong đoạn [500 – 5; 500 + 5] hay [495; 505].
b) Sai số tương đối
Sai số tương đối của số gần đúng a, kí hiệu là δa, là tỉ số giữa sai số tuyệt đối và |a|, tức là .
Ví dụ: Bao bì của một chai nước suối có ghi thể tích thực là 350ml, biết rằng sai số tuyệt đối là 2ml. Tìm sai số tương đối của chai nước suối.
Hướng dẫn giải
Ta có a = 350 (ml) và ∆a = 2 (ml), do đó sai số tương đối là:
.
Nhận xét:
Nếu thì ∆a ≤ d, do đó . Nếu càng nhỏ thì chất lượng của phép đo hay tính toán càng cao. Người ta thường viết sai số tương đối dưới dạng phần trăm.
Ví dụ: Trên các chai cồn xịt khuẩn có ghi thể tích thực như sau:
+ Chai 1: 500ml ± 3ml;
+ Chai 2: 1000ml ± 8ml.
Chai nào ghi thể tích thực chính xác hơn tính theo sai số tương đối?
Hướng dẫn giải
+ Chai 1: a1 = 500 (ml) và d = 3 (ml), do đó sai số tương đối là:
.
+ Chai 2: a2 = 1000 (ml) và d = 8 (ml), do đó sai số tương đối là:
.
Vì 0,6% < 0,8% nên δ1 < δ2.
Vậy chai 1 ghi thể tích thực chính xác hơn chai 2 tính theo sai số tương đối.
3. Quy tròn số gần đúng
Số thu được sau khi thực hiện làm tròn số được gọi là số quy tròn. Số quy tròn là một số gần đúng của số ban đầu.
Ví dụ:
+ Số quy tròn của số 12,64 đến hàng đơn vị là 13;
+ Số quy tròn của số 500,876 đến hàng phần mười là 500,9.
Chú ý:
•Đối với chữ số hàng làm tròn:
+ Giữ nguyên nếu chữ số ngay bên phải nó nhỏ hơn 5;
+ Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn hoặc bằng 5.
•Đối với chữ số sau hàng làm tròn:
+ Bỏ đi nếu ở phần thập phân;
+ Thay bởi các chữ số 0 nếu ở phần số nguyên.
Ví dụ:
a) Làm tròn số 5437,56 đến hàng trăm, số 22,758 đến hàng phần mười và số đúng d ∈ [6,5; 7,5) đến hàng đơn vị. Đánh giá sai số tuyệt đối của phép làm tròn số đúng d.
b) Cho số gần đúng a = 3,67 với độ chính xác d = 0,02. Số đúng thuộc đoạn nào? Nếu làm tròn số a thì nên làm tròn đến hàng nào? Vì sao?
Hướng dẫn giải
a) Số quy tròn của số 5437,56 đến hàng trăm là 5400;
Số quy tròn của số 22,758 đến hàng phần mười là 22,8;
Mọi số đúng d ∈ [6,5; 7,5) khi làm tròn đến hàng đơn vị đều thu được số quy tròn là 7 và sai số tuyệt đối |d – 7| ≤ 0,5.
b) Số đúng thuộc đoạn [3,67 – 0,02; 3,67 + 0,02] hay [3,65; 3,69]. Khi làm tròn số gần đúng a ta nên làm tròn đến hàng phần chục do chữ số hàng phần trăm của a là chữ số không chắc chắn đúng.
Nhận xét:
+ Khi thay số đúng bởi số quy tròn đến một hàng nào đó thì sai số tuyệt đối của số quy tròn không vượt quá nửa đơn vị của hàng làm tròn.
+ Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà d nhỏ hơn 1 đơn vị của hàng đó.
Ví dụ: Cho số gần đúng a = 213 666 với độ chính xác d = 10. Hãy viết số quy tròn của số a.
Hướng dẫn giải
Vì độ chính xác đến hàng chục (d = 10) nên ta làm tròn đến hàng trăm theo quy tắc làm tròn như trên. Số quy tròn của a là 213700.
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 4
Bài 13: Các số đặc trưng đo trung tâm xu thế
Bài 14: Các số đặc trưng đo độ phân tán
Bài tập cuối chương 5