Với giải Bài 5.2 trang 77 Toán lớp 10 Kết nối tri thức với cuộc sống trong Bài 12: Số gần đúng và sai số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài 12: Số gần đúng và sai số
Bài 5.2 trang 77 Toán lớp 10: Giải thích kết quả “Đo độ cao của một ngọn núi cho kết quả là 1 235 +5 m” và thực hiện làm tròn số gần đúng.
Phương pháp giải:
- Giải thích: Chỉ ra số độ cao gần đúng và độ chính xác
- Làm tròn số gần đúng:
Bước 1: Xác định hàng làm tròn.
Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ
làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà ở nhỏ hơn 1 đơn vị của hàng đó.
Bước 2: Làm tròn:
Đối với chữ số hàng làm tròn:
- Giữ nguyên nểu chữ số ngay bên phải nó nhỏ hơn 5;
- Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn
hoặc bằng 5.
Đối với chữ số sau hàng làm tròn:
- Bỏ đi nếu ở phần thập phân;
- Thay bởi các chữ số 0 nếu ở phần số nguyên.
Lời giải:
- Giải thích: “Đo độ cao của một ngọn núi cho kết quả là 1 235 5 m” có nghĩa là
Độ cao của ngọn núi gần với 1235m và độ chính xác là 5m
Bài tập vận dụng:
Bài 1. Giải thích kết quả “Đo độ sâu của mực nước biển ở một vùng cho kết quả là 2136 ± 5 m” và thực hiện làm tròn số gần đúng.
Hướng dẫn giải
Độ sâu thực tế của mực nước biển là số đúng. Tuy không biết nhưng ta biết kết quả đo đạc là 2136 m nên 2136 là số gần đúng cho . Độ chính xác d = 5 (m).
Vì độ chính xác đến hàng đơn vị (d = 5) nên ta làm tròn đến hàng chục theo quy tắc làm tròn. Do đó số quy tròn của a là 2140.
Bài 2. Các nhà vật lý sử dụng ba phương pháp đo hằng số Hubble lần lượt cho kết quả như sau:
67,31 ± 0,96;
67,90 ± 0,55;
67,74 ± 0,46.
Phương pháp nào chính xác nhất tính theo sai số tương đối?
Hướng dẫn giải
Với phương pháp đo thứ nhất: a1 = 67,31 và d1 = 0,96, do đó sai số tương đối là:
Với phương pháp đo thứ hai: a2 = 67,90 và d2 = 0,55, do đó sai số tương đối là:
Với phương pháp đo thứ ba: a3 = 67,74 và d3 = 0,46, do đó sai số tương đối là:
Vì 0,68% < 0,81% < 1,4% nên δ3 < δ2 < δ1.
Do đó phương pháp đo thứ ba là chính xác nhất tính theo sai số tương đối.
Bài 3. Làm tròn số 4372,8 đến hàng chục và 8,125 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn.
Hướng dẫn giải
+ Số quy tròn của số 4372,8 đến hàng chục là 4370. Sai số tuyệt đối là
∆ = |4370 − 4372,8| = 2,8.
+ Số quy tròn của số 8,125 đến hàng phần trăm là 8,13. Sai số tuyệt đối là
∆' = |8,13 – 8,125| = 0,005.
Xem thêm các bài giải Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Câu hỏi trang 74 Toán lớp 10:...
Bài 5.1 trang 77 Toán lớp 10: Trong các số sau, những số nào là số gần đúng?...
Xem thêm các bài giải SGK Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 13: Các số đặc trưng đo trung tâm xu thế
Bài 14: Các số đặc trưng đo độ phân tán