Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 7 Bài 1: Góc ở vị trí đặc biệt chi tiết sách Toán 7 Tập 1 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 1: Góc ở vị trí đặc biệt
Video bài giảng Góc ở vị trí đặc biệt - Cánh diều
Hai góc đó có liên hệ gì đặc biệt?
Phương pháp giải:
Xác định đỉnh, cạnh của hai góc đó
Lời giải:
2 góc được đánh dấu là 2 góc có: chung đỉnh; có chung một cạnh ; kim giờ và kim giây nằm về hai phía của kim phút
I. Hai góc kề nhau
a) Lấy điểm A bất kì trên tia Oz (A khác O), lấy điểm B bất kì trên tia Ot (B khác O), vẽ đoạn thẳng AB.
b) Đoạn thẳng AB có cắt đường thẳng xy hay không?
Phương pháp giải:
Vẽ hình và nhận xét
Lời giải:
a)
b) Đoạn thẳng AB cắt đường thẳng xy
Hoạt động 2 trang 90 Toán lớp 7: Quan sát hai góc xOy và zOy ở Hình 3.
a) Nêu đỉnh chung và cạnh chung của hai góc xOy và zOy.
b) Vẽ tia đối Oy’ của tia Oy.
c) Hai tia Ox và Oz có nằm về hai phía của đường thẳng yy’ hay không?
Phương pháp giải:
Xác định đỉnh, cạnh của hai góc được đánh dấu rồi nhận xét.
+ Vẽ hình và nhận xét
Lời giải:
a) Đỉnh của góc xOy và zOy cùng là đỉnh O; cạnh chung là cạnh Oy.
b)
- Đặt thước thẳng sao cho mép thước trùng với tia Oy.
- Vẽ tia Oy' sao cho hai tia Oy và Oy’ cùng nằm trên đường thẳng; chữ cái y và y' được viết vào hai phía của O và sát vào đường thẳng vừa vẽ.
Khi đó, hai tia Oy’ là tia đối của tia Oy (như hình vẽ).
c) Hai tia Ox và Oz nằm về hai phía của đường thẳng yy’
Phương pháp giải:
2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
Lời giải:
Hai góc xOy và mOn không phải là hai góc kề nhau vì không có cạnh nào chung.
Phương pháp giải:
2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
Tính chất 2 góc kề nhau
Lời giải:
Hai góc mOn và pOn có là hai góc kề nhau vì có đỉnh O chung, cạnh On chung, 2 cạnh còn lại là Om và Op nằm về hai phía so với đường thẳng chứa On.
Vì On nằm trong góc mOp nên
Vậy
II. Hai góc bù nhau, hai góc kề bù
Hoạt động 3 trang 92 Toán lớp 7: Tìm tổng số đo của góc 110 và 70
Phương pháp giải:
Tìm tổng số đo của góc
Lời giải:
2 góc có tổng số đo là: 110 +70 = 180
a) Hai góc xOt và yOt có kề nhau không?
b) Tính
Phương pháp giải:
a) 2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
b) Dựa vào tính chất 2 góc kề nhau, tính tổng số đo
Lời giải:
a) Hai góc xOt và yOt là hai góc kề nhau vì có đỉnh O chung, cạnh Ot chung, 2 cạnh còn lại là Ox và Oy nằm về hai phía so với đường thẳng chứa tia Ot
b) Vì tia Ot nằm trong góc xOy nên
Mà ( góc bẹt)
Chú ý:
Ta có thể đo số đo 2 góc xOt và yOt rồi tính tổng của chúng
Luyện tập vận dụng 3 trang 93 Toán lớp 7: Tính góc xOt trong Hình 12
Phương pháp giải:
Sử dụng tính chất : Tổng số đo của 2 góc kề bù bằng 180 độ
Lời giải:
Ta có: ( 2 góc kề bù)
III. Hai góc đối đỉnh
a) Cạnh Ox của góc xOz là tia đối của cạnh nào của góc yOt.
b) Cạnh Oz của góc xOz là tia đối của cạnh nào của góc yOt.
Phương pháp giải:
Hai tia đối nhau nếu chúng có chung gốc và hợp thành 1 đường thẳng
Lời giải:
a) Cạnh Ox của góc xOz là tia đối của cạnh Oy của góc yOt.
b) Cạnh Oz của góc xOz là tia đối của cạnh Ot của góc yOt.
Hoạt động 6 trang 94 Toán lớp 7: Quan sát Hình 15 và giải thích vì sao:
a) Hai góc xOy và yOz là hai góc kề bù;
b) Hai góc yOz và zOt là hai góc kề bù;
c) và
Phương pháp giải:
+ 2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
+ 2 góc có tổng số đo là 180 độ là 2 góc bù nhau
+ 2 góc kề bù nếu chúng vừa kề nhau, vừa bù nhau
Lời giải:
a) Vì 2 góc có chung gốc O, chung cạnh Oy, 2 cạnh còn lại là Ox và Oz nằm về hai phía đối với đường thẳng chứa tia Oy nên hai góc xOy và yOz là hai góc kề nhau. Hơn nữa, hai góc xOy và yOz có tổng bằng góc xOz =180 độ nên hai góc xOy và yOz là hai góc bù nhau.
Vậy hai góc xOy và yOz là hai góc kề bù
b) Vì 2 góc có chung gốc O, chung cạnh Oz, 2 cạnh còn lại là Oy và Ot nằm về hai phía đối với đường thẳng chứa tia Oz nên hai góc yOz và zOt là hai góc kề nhau. Hơn nữa, hai góc yOz và zOt có tổng bằng góc xOz =180 độ nên hai góc yOz và zOt là hai góc bù nhau.
Vậy hai góc yOz và zOt là hai góc kề bù
c) Do
Vậy
Chú ý: Ta có thể dùng dấu hiệu sau: 2 góc kề bù khi có chung đỉnh, chung một cạnh, 2 cạnh còn lại là 2 tia đối nhau.
Luyện tập vận dụng 4 trang 94 Toán lớp 7: Tìm số đo x trong Hình 17
Phương pháp giải:
2 góc đối đỉnh thì bằng nhau
Lời giải:
Ta có: ( 2 góc đối đỉnh). Mà
Ta có: ( kề bù)
Vậy x = 60
Bài 1 trang 94 Toán lớp 7: a) Tìm hai góc kề nhau trong mỗi hình 18a, 18b:
b) Tìm hai góc kề bù ở Hình 19.
c) Tìm hai góc đối đỉnh trong mỗi hình 20a, 20b, 20c, 20d:
Phương pháp giải:
+ 2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
+ 2 góc có tổng số đo là 180 độ là 2 góc bù nhau
+ 2 góc kề bù nếu chúng vừa kề nhau, vừa bù nhau
+ Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Lời giải:
a) Hai góc kề nhau:
Trong hình 18a là: góc iAj và góc jAk
Trong hình 18b là: góc eBf và góc fBg; góc eBf và góc fBh; góc eBg và góc gBh; góc fBg và góc gBh
b) 2 góc kề bù trong Hình 19 là: góc xOy và góc yOu; góc xOz và góc zOu; góc xOt và góc tOu
c) 2 góc đối đỉnh:
Trong Hình 20a: Không có vì 2 góc này không có chung đỉnh
Trong Hình 20b: Không có vì không có 2 góc nào mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Trong Hình 20c: góc xOy và góc x’Oy’
Trong Hình 20d: Không có vì không có 2 góc nào mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Bài 2 trang 95 Toán lớp 7: Quan sát Hình 21 và chỉ ra:
a) Hai góc kề nhau;
b) Hai góc kề bù (khác góc bẹt);
c) Hai góc đối đỉnh (khác góc bẹt và góc không).
Phương pháp giải:
+ 2 góc có đỉnh chung, có một cạnh chung, hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó là hai góc kề nhau
+ 2 góc có tổng số đo là 180 độ là 2 góc bù nhau
+ 2 góc kề bù nếu chúng vừa kề nhau, vừa bù nhau
+ Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
Lời giải:
a) 2 góc kề nhau là: góc ABE và EBD; góc AFG và GFE; góc AEB và BED; góc BCG và GCD; góc FGB và BGC; góc BGC và CGE; góc CGE và EGF; góc EGF và FGB.
b) 2 góc kề bù là: góc AFG và GFE; góc BCG và GCD; góc FGB và BGC; góc BGC và CGE; góc CGE và EGF; góc EGF và FGB.
c) 2 góc đối đỉnh là: góc FGB và CGE; góc BGC và EGF
Bài 3 trang 95 Toán lớp 7: Tìm số đo:
a) Góc mOp trong Hình 22a;
b) Góc qPr trong Hình 22b;
c) x,y trong Hình 22c.
Phương pháp giải:
+ Nếu tia On nằm trong góc mOp thì
+ 2 góc kề bù có tổng số đo là 180 độ
+ 2 góc đối đỉnh thì bằng nhau
Lời giải:
a) Vì tia On nằm trong góc mOp nên
Vậy số đo góc mOp là 75 độ
b) Ta có: (2 góc kề bù)
Vậy số đo góc qPr là 125 độ
c) Ta có: ( 2 góc đối đỉnh), mà
( 2 góc kề bù) nên
Vậy x = 41 ; y = 139
Phương pháp giải:
Tổng 2 góc kề bù là 180 độ
Lời giải:
Có 4 góc kề nhau được tạo thành, xếp thành góc bẹt, mỗi góc tạo bởi 2 thanh chắn vòm cửa
Nên mỗi góc có số đo: 180 : 4 = 45.
Lý thuyết Góc ở vị trí đặc biệt
1. Hai góc kề nhau
Hai góc kề nhau là hai góc có đỉnh chung, có một cạnh chung và hai cạnh còn lại nằm về hai phía của đường thẳng chứa cạnh chung đó.
Ví dụ:
Hai góc yOz và yOt trong hình vẽ có chung đỉnh O, có một cạnh chung là Oy, hai cạnh còn lại là Oz và Ot nằm về hai phía của đường thẳng xy.
Vì vậy hai góc yOz và yOt là hai góc kề nhau.
Tính chất:
- Cho góc xOz (khác góc bẹt) và tia Oy nằm trong góc đó. Khi đó hai góc xOy và yOz là hai góc kề nhau và .
- Nếu góc xOz là góc bẹt thì với mỗi tia Oy (khác hai tia Ox, Oz), ta cũng có: .
Ví dụ: Trong hình hai góc xOy và yOz có phải là hai góc kề nhau không? Tính số đo góc xOz ?
Hướng dẫn giải
Tia Oy nằm trong góc xOz nên góc xOy và góc yOz là hai góc kề nhau.
Và .
Vậy hai góc xOy và yOz là hai góc kề nhau và .
2. Hai góc bù nhau. Hai góc kề bù
- Hai góc bù nhau là hai góc có tổng bằng 180°.
- Hai góc vừa kề nhau, vừa bù nhau gọi là hai góc kề bù.
Chú ý: Hai góc có một cạnh chung, hai cạnh còn lại là hai tia đối nhau là hai góc kề bù.
Ví dụ:
a)
Ta có : .
Vì hai góc zAt và xOy có tổng bằng 180° nên góc zAt và xOy là hai góc bù nhau.
b)
- Hai góc xOz và góc xOy có đỉnh O chung và cạnh Ox chung ; Hai cạnh Oy và Oz nằm về hai phía của đường thẳng chứa tia Ox. Vì thế, hai góc xOz và góc xOy kề nhau.
- Ta có : , vậy nên hai góc xOz và xOy là hai góc bù nhau.
Hai góc xOz và xOy là hai góc vừa kề nhau vừa bù nhau.
Vậy, góc xOz và góc xOy là hai góc kề bù.
3. Hai góc đối đỉnh
- Hai góc đối đỉnh là hai góc mà mỗi cạnh của góc này là tia đối của một cạnh của góc kia.
- Hai góc đối đỉnh thì bằng nhau.
Ví dụ :
Cạnh Ot của góc tOz là tia đối của cạnh Ox của góc xOy;
Cạnh Oz của góc tOz là tia đối của cạnh Oy của góc xOy;
Vì vậy, góc xOy và góc tOz là hai góc đối đỉnh, nên .
Tương tự, góc xOz và góc tOy cũng là hai góc đối đỉnh, nên .
Xem thêm các bài giải SGK Toán lớp 7 Cánh diều hay, chi tiết:
Hoạt động thực hành và trải nghiệm. Chủ đề 2: Tạo đồ dùng hình lăng trụ đứng
Bài 2: Tia phân giác của một góc