Với giải Bài 3.30 trang 46 SBT Toán lớp 7 Kết nối tri thức chi tiết trong Bài 11: Định lí và chứng minh định lí giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 7. Mời các bạn đón xem:
Giải sách bài tập Toán lớp 7 Bài 11: Định lí và chứng minh định lí
Bài 3.30 trang 46 SBT Toán 7 Tập 1: Vẽ hình minh họa, ghi giả thiết, kết luận bằng kí hiệu và chứng minh mỗi định lí sau:
a) Hai góc cùng phụ với một góc thứ ba thì bằng nhau.
b) Hai góc cùng bù với một góc thứ ba thì bằng nhau.
Lời giải:
a)
Giả thiết:
;
Kết luận:
Chứng minh:
Ta có: suy ra, (1)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
b)
Giả thiết: ;.
Kết luận:
Chứng minh:
Ta có: suy ra, (3)
suy ra, (2)
Từ (1) và (2) suy ra: =
Vậy
Xem thêm các bài giải SBT Toán 7 Kết nối tri thức hay, chi tiết khác:
Bài 3.27 trang 46 SBT Toán 7 Tập 1: Cho định lí: “Một đường thẳng cắt hai đường thẳng song song thì tạo thành cặp góc so le trong bằng nhau”...
Bài 3.28 trang 46 SBT Toán 7 Tập 1: Cho định lí: “Một đường thẳng cắt hai đường thẳng tạo thành một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song”...
Bài 3.29 trang 46 SBT Toán 7 Tập 1: Cho định lí: “Tia đối của tia phân giác của một góc là tia phân giác của góc đối đỉnh với góc đó”. Hãy vẽ hình ghi giả thiết, kết luận và chứng minh định lí đó...
Bài 3.31 trang 46 SBT Toán 7 Tập 1: Cho góc vuông uOv và tia Oy đi qua một điểm trong của góc đó. Vẽ tia Ox sao cho Ou là tia phân giác của góc xOy. Vẽ tia Oz sao cho Ov là tia phân giác của góc yOz. Chứng minh rằng hai góc xOy và yOz là hai góc kề bù...
Bài 3.32 trang 46 SBT Toán 7 Tập 1: Vẽ hình minh họa, ghi giả thiết, kết luận bằng kí hiệu và chứng minh định lí sau: Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng kia...
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 10: Tiên đề Euclid. Tính chất của hai đường thẳng song song
Bài 11: Định lí và chứng minh định lí
Ôn tập chương 3
Bài 12: Tổng các góc trong một tam giác
Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác