Với giải Bài 4.12 trang 73 Toán lớp 7 Kết nối tri thức với cuộc sống chi tiết trong Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải bài tập Toán lớp 7 Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Bài 4.12 trang 73 Toán lớp 7: Trong mỗi hình bên (H.4.39), hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Phương pháp giải:
Lời giải:
a)Xét tam giác ABD và tam giác CBD có:
AB=CD
BD chung
Vậy (c.g.c)
b)Xét hai tam giác OAD và OCB có:
AO=CO
(đối đỉnh)
OD=OB
Vậy (c.g.c)
Bài tập vận dụng:
Bài 1. Trong mỗi hình dưới đây, hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau.
Hướng dẫn giải
a) Hai tam giác AED và CEB có:
AE = CE
(hai góc đối đỉnh)
DE = BE
Do đó (c.g.c)
b) Hai tam giác QGH và QIH có:
QH là cạnh chung
Do đó (g.c.g)
Bài 2. Cho hình vẽ dưới đây, biết CE = DE và .
Chứng minh rằng:
a) ;
b) .
Hướng dẫn giải
a) Xét và có:
CE = DE (theo giả thiết)
(theo giả thiết)
AE là cạnh chung
Do đó (c.g.c)
b) Vì (theo câu a)
⇒ AC = AD (2 cạnh tương ứng) và (2 góc tương ứng)
Xét và có:
AC = AD (chứng minh trên)
(chứng minh trên)
AB là cạnh chung
Do đó (c.g.c)
Bài 3. Cho hình vẽ dưới đây, biết đoạn thẳng JK song song và bằng đoạn thẳng ML.
Chứng minh rằng:
a)
b) OP = OQ.
Hướng dẫn giải
a) Vì JK ∥ML nên:
(2 góc so le trong)
(2 góc so le trong)
Xét và có:
(chứng minh trên)
JK = ML (theo giả thiết)
(chứng minh trên)
Do đó (g.c.g)
b) Vì (theo câu a)
⇒ KO = MO (2 cạnh tương ứng)
Xét và có:
(chứng minh trên)
KO = MO (chứng minh trên)
(2 góc đối đỉnh)
Do đó (g.c.g)
⇒ OP = OQ (2 cạnh tương ứng).
Xem thêm các bài giải Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
HĐ 4 trang 72 Toán lớp 7: Vẽ thêm tam giác ABC sao cho BC = 3cm, góc A'B'C' = 80 độ, góc A'C'B' = 40 độ (H4.34).Dùng thước thẳng có vạch chia hoặc compa so sánh độ dài các cạnh của hai tam giác ABC và A'B'C'. Hai tam giác ABC và A'B'C' có bằng nhau không?...
Xem thêm các bài giải SGK Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác