Cho hai mặt phẳng (P1) và (P2). Lấy hai đường thẳng ∆1, ∆2 sao cho ∆1 ⊥ (P1), ∆2 ⊥ (P2)

75

Với giải Hoạt động 8 trang 74 Toán 12 Tập 2 Cánh diều chi tiết trong Bài 2: Phương trình đường thẳng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Phương trình đường thẳng

Hoạt động 8 trang 74 Toán 12 Tập 2: Cho hai mặt phẳng (P1) và (P2). Lấy hai đường thẳng ∆1, ∆2 sao cho ∆1 ⊥ (P1), ∆2 ⊥ (P2) (Hình 31).

Hoạt động 8 trang 74 Toán 12 Cánh diều Tập 2 | Giải Toán 12

a) Nêu cách xác định góc giữa hai đường thẳng ∆1, ∆2.

b) Góc đó có phụ thuộc vào việc chọn hai đường thẳng ∆1, ∆2 như trên hay không?

Lời giải:

a) Dựng hai đường thẳng ∆'1, ∆'2 cùng đi qua điểm I và lần lượt song song (hoặc trùng) với ∆1, ∆2. Khi đó góc giữa hai đường thẳng ∆1, ∆2 bằng góc giữa hai đường thẳng ∆'1, ∆'2. Ta có (∆1, ∆2) = (∆'1, ∆'2).

b) Vì ∆1 ⊥ (P1) và ∆'1 song song hoặc trùng với ∆1 nên ∆'1 ⊥ (P1).

Tương tự ∆'2 ⊥ (P2).

Khi đó, góc giữa hai đường thẳng ∆'1, ∆'2 luôn là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng (P1) và (P2) nên góc giữa hai đường thẳng ∆1, ∆2 không phụ thuộc vào việc chọn hai đường thẳng ∆1, ∆2.

Đánh giá

0

0 đánh giá