Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 12 Bài 1: Xác xuất có điều kiện chi tiết sách Toán 12 Tập 2 Cánh diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 12. Mời các bạn đón xem:
Giải bài tập Toán 12 Bài 1: Xác xuất có điều kiện
A: “Học sinh được gọi lên bảng có tên là Thanh”;
B: “Học sinh được gọi lên bảng là học sinh nữ”.
Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được tính như thế nào?
Lời giải:
Sau bài học này, ta giải quyết được bài toán trên như sau:
Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được tính bằng công thức: .
Do có 1 học sinh nữ tên Thanh nên P(A ∩ B) = .
Do có 17 học sinh nữ trong lớp nên P(B) = .
Vì thế, ta có:
Hoạt động 1 trang 90 Toán 12 Tập 2: Trong bài toán ở phần mở đầu, hãy tính:
a) Xác suất để học sinh được gọi lên bảng có tên là Thanh, biết rằng học sinh đó là nữ;
b) Tính tỉ số . Từ đó, hãy so sánh xác suất tính được ở câu a) với tỉ số
Lời giải:
a) Lớp có 17 bạn học sinh nữ, trong đó có 1 học sinh nữ tên là Thanh, do đó xác suất để học sinh được gọi lên bảng có tên là Thanh, biết rằng học sinh đó là nữ là .
b) Xác suất của biến cố B là P(B) = .
Biến cố A ∩ B: “Học sinh được gọi lên bảng có tên Thanh và là học sinh nữ”.
Ta có n(A ∩ B) = 1, suy ra P(A ∩ B) = .
Khi đó, .
Vậy xác suất tính được ở câu a) bằng với tỉ số
Lời giải:
Xét hai biến cố sau:
A: “Lần thứ hai lấy được quả bóng màu đỏ”;
B: “Lần thứ nhất lấy được quả bóng màu xanh”.
Khi đó, xác suất để lần thứ hai lấy được quả bóng màu đỏ, biết rằng lần thứ nhất đã lấy được quả bóng màu xanh, chính là xác suất của A với điều kiện B.
Cách 1:
Nếu B xảy ra, tức là lần thứ nhất lấy được quả bóng màu xanh. Khi đó, trong hộp còn lại 9 quả bóng với 5 quả bóng màu xanh và 4 quả bóng màu đỏ.
Vậy xác suất để lần thứ hai lấy được quả bóng màu đỏ, biết rằng lần thứ nhất đã lấy được quả bóng màu xanh là: P(A | B) = .
Cách 2:
Lấy ngẫu nhiên lần lượt hai quả bóng trong hộp, lấy không hoàn lại, lần thứ nhất lấy một quả bóng có 10 cách chọn, lần thứ hai lấy một quả bóng có 9 cách chọn một quả bóng trong hộp. Do đó, n(Ω) = 10 ∙ 9 = 90.
Lần thứ nhất lấy bóng có 6 cách chọn một quả bóng màu xanh, lần thứ hai có 9 cách chọn một quả bóng từ 9 quả bóng còn lại trong hộp. Do đó, n(B) = 6 ∙ 9 = 54.
Khi đó, P(B) = .
Lần thứ nhất lấy bóng có 6 cách chọn một quả bóng màu xanh, lần thứ hai lấy bóng có 4 cách chọn một quả bóng màu đỏ. Do đó, n(A ∩ B) = 6 ∙ 4 = 24.
Khi đó, P(A ∩ B) = .
Vậy xác suất để lần thứ hai lấy được quả bóng màu đỏ, biết rằng lần thứ nhất đã lấy được quả bóng màu xanh là:
P(A | B) =
Lời giải:
Xét hai biến cố sau:
A: “Chiếc thẻ được chọn ra ghi số 5”;
B: “Chiếc thẻ được chọn ra có màu vàng”.
Khi đó, xác suất để chiếc thẻ được chọn ra ghi số 5, biết rằng chiếc thẻ đó có màu vàng, chính là xác suất có điều kiện P(A | B).
Ta có P(A | B) = .
Vậy xác suất để chiếc thẻ được chọn ra ghi số 5, biết rằng chiếc thẻ đó có màu vàng, là 0,2.
Lời giải:
Xét các biến cố sau:
C: “Người được chọn ra trong số những người thử nghiệm là bị nhiễm bệnh sốt xuất huyết”;
D: “Người được chọn ra trong số những người thử nghiệm cho kết quả âm tính (khi kiểm tra)”.
Từ các dữ liệu thống kê ở Bảng 2, ta có:
P(D) = ;
.
Vậy P(C | D) =
Lời giải:
Ta vẽ sơ đồ hình cây như sau:
Lời giải:
Xét hai biến cố sau:
A: “Hộp sữa chua được lấy ra là hộp sữa chua dâu”;
B: “Hộp sữa chua được lấy ra là sữa chua không đường”.
Khi đó, xác suất để hộp sữa chua được lấy ra là hộp sữa chua dâu, biết rằng hộp sữa chua đó là sữa chua không đường, chính là xác suất có điều kiện P(A | B).
Sơ đồ hình cây biểu thị cách tính xác suất có điều kiện P(A | B), được vẽ như sau:
Vậy xác suất để hộp sữa chua được lấy ra là hộp sữa chua dâu, biết rằng hộp sữa chua đó là sữa chua không đường là P(A | B) =
BÀI TẬP
A. 0,2.
B. 0,8.
C. 0,25.
D. 0,75.
Lời giải:
Đáp án đúng là: B
Vì A, B là hai biến cố độc lập nên P(A ∩ B) = P(A) ∙ P(B) = 0,8 ∙ 0,25 = 0,2.
Khi đó, P(A | B) =
a) Xác suất nhà được chọn có ô tô, biết rằng nhà đó gắn biển số chẵn, là:
b) Xác suất nhà được chọn gắn biển số lẻ, biết rằng nhà đó có ô tô, là:
Lời giải:
a) Đáp án đúng là: D
Xét hai biến cố:
A: “Nhà được chọn có ô tô”;
B: “Nhà được chọn gắn biển số chẵn”.
Khi đó, xác suất nhà được chọn có ô tô, biết rằng nhà đó gắn biển số chẵn, chính là xác suất có điều kiện P(A | B).
Theo bài ra, ta có: ; .
Khi đó, P(A | B) =
a) Xác suất bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python, biết rằng máy tính đó được đánh số lẻ, là:
b) Xác suất bạn Nam chọn được máy tính đánh số chẵn, biết rằng máy tính đó đã cài đặt phần mềm lập trình Python, là:
Lời giải:
a) Đáp án đúng là: C
Xét hai biến cố:
A: “Bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python”;
B: “Bạn Nam chọn được máy tính được đánh số lẻ”.
Khi đó, xác suất bạn Nam chọn được máy tính đã cài đặt phần mềm lập trình Python, biết rằng máy tính đó được đánh số lẻ, chính là xác suất có điều kiện P(A | B).
Vì có 40 máy tính được đánh số từ 1 đến 40, mỗi máy đánh 1 số khác nhau nên có 20 máy được đánh số lẻ và 20 máy được đánh số chẵn. Ta có P(B) = .
Theo bài ra ta có, xác suất chọn được một máy tính đã cài đặt phần mềm lập trình Python được đánh số lẻ là 0,45, tức là P(A ∩ B) = 0,45.
Khi đó, P(A | B) =
a) P(B | A);
b) P(A ∩ );
c) P( | A).
Lời giải:
a) Ta có P(B | A) = .
b) Vì A ∩ và A ∩ B là hai biến cố xung khắc và (A ∩ ) ∪ (A ∩ B) = A nên theo tính chất của xác suất ta có P(A) = P(A ∩ ) + P(A ∩ B).
Suy ra P(A ∩ ) = P(A) – P(A ∩ B) = 0,6 – 0,4 = 0,2.
c) Ta có c) Ta có P( | A) =
A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”;
B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Chứng minh rằng A, B là hai biến cố độc lập.
Lời giải:
Cách 1:
Theo bài ra ta có: n(Ω) = 7 ∙ 7 = 49; n(A) = 3 ∙ 7 = 21; n(B) = 7 ∙ 4 = 28.
Do đó, P(A) = ; P(B) = . Suy ra .
Ta có biến cố A ∩ B: “Quả bóng màu xanh được lấy ra ở lần thứ nhất và quả bóng màu đỏ được lấy ra ở lần thứ hai”. Suy ra P(A ∩ B) = .
Khi đó, P(A | B) = .
Ta có biến cố A ∩ : “Quả bóng màu xanh được lấy ra ở cả hai lần”.
Suy ra P(A ∩ ) = .
Khi đó, P(A | ) = .
Vậy ta có P(A) = P(A | B) = P(A | ) = . (1)
Tương tự, ta tính được:
P(B | A) = ; P(B | ) = .
Vậy ta có P(B) = P(B | A) = P(B | ) = . (2)
Từ (1) và (2) suy ra A, B là hai biến cố độc lập.
Cách 2:
Nếu A xảy ra, tức là quả bóng màu xanh được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Nếu A không xảy ra, tức là quả bóng màu đỏ được lấy ra ở lần thứ nhất. Vì quả bóng lấy ra được bỏ lại vào hộp nên trong hộp vẫn có 3 quả bóng xanh và 4 quả bóng đỏ.
Vậy P(B) = .
Như vậy, xác suất xảy ra của biến cố B không thay đổi bởi việc xảy ra hay không xảy ra của biến cố A.
Vì lần thứ nhất lấy và lần thứ hai lấy sau lần thứ nhất nên P(A) = dù biến cố B có xảy ra hay không xảy ra.
Vậy A và B là hai biến cố độc lập.
Lời giải:
Xét hai biến cố:
A: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6”;
B: “Xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Khi đó, xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, chính là xác suất có điều kiện P(A | B).
Vì gieo lần lượt từng xúc xắc trong hai xúc xắc đó nên n(Ω) = 6 ∙ 6 = 36.
Xúc xắc thứ nhất xuất hiện mặt 4 chấm thì có 1 cách chọn, xúc xắc thứ hai có 6 cách chọn mặt xuất hiện. Do đó, P(B) = .
Biến cố A ∩ B: “Tổng số chấm xuất hiện trên hai xúc xắc bằng 6 và xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Khi đó, để có tổng số chấm bằng 6 thì xúc xắc thứ hai phải xuất hiện mặt 2 chấm. Do đó, P(A ∩ B) = .
Khi đó, ta có P(A | B) = .
Vậy xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 6, biết rằng xúc xắc thứ nhất xuất hiện mặt 4 chấm, là
Lời giải:
Gọi A là biến cố: “chiếc áo sơ mi trong lô hàng S được chọn qua được lần kiểm tra thứ nhất”, B là biến cố: “chiếc áo sơ mi trong lô hàng S được chọn qua được lần kiểm tra thứ hai”, C là biến cố: “chiếc áo sơ mi được chọn đủ tiêu chuẩn xuất khẩu”.
Theo bài ra ta có: P(A) = 98% = 0,98; P(B | A) = 95% = 0,95.
Một chiếc áo đủ tiêu chuẩn xuất khẩu khi cả hai lần kiểm tra chất lượng sản phẩm đều đạt. Xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu là:
P(C) = P(A) ∙ P(B | A) = 0,98 ∙ 0,95 = 0,931.
Lời giải:
Xét hai biến cố:
A: “Sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp”;
B: “Sản phẩm lấy ra ở lần thứ hai có chất lượng thấp”.
Khi đó, xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp chính là xác suất có điều kiện P(B | A).
Nếu A xảy ra tức là sản phẩm lấy ra ở lần thứ nhất có chất lượng thấp. Khi đó, trong lô sản phẩm còn lại 19 sản phẩm với 4 sản phẩm chất lượng thấp. Vậy P(B | A) = .
Vậy xác suất để cả hai sản phẩm được lấy ra đều có chất lượng thấp là
Lời giải:
Vì có 9 quyển sách viết bằng tiếng Anh, trong đó 3 quyển sách Khoa học và 6 quyển sách Nghệ thuật, các quyển sách còn lại viết bằng tiếng Việt nên ta có:
10 + 15 – 9 = 16 quyển sách viết bằng tiếng Việt,
trong đó có 10 – 3 = 7 quyển sách Khoa học và 15 – 6 = 9 quyển sách Nghệ thuật.
Xét hai biến cố sau:
A: “Quyển sách được lấy ra là sách viết bằng tiếng Việt”;
B: “Quyển sách được lấy ra là sách Khoa học”.
Khi đó, xác suất để quyển sách được lấy ra là sách viết bằng tiếng Việt, biết rằng quyển sách đó là sách Khoa học, chính là xác suất có điều kiện P(A | B).
Sơ đồ hình cây biểu thị cách tính xác suất có điều kiện P(A | B), được vẽ như sau:
Vậy xác suất để quyển sách được lấy ra là sách viết bằng tiếng Việt, biết rằng quyển sách đó là sách Khoa học, là = 0,7.
Xem thêm các bài giải bài tập Toán lớp 12 Cánh diều hay, chi tiết khác:
§2. Công thức xác suất toàn phần. Công thức Bayes